修路方案
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
5
-
描述
-
南将军率领着许多部队,它们分别驻扎在N个不同的城市里,这些城市分别编号1~N,由于交通不太便利,南将军准备修路。
现在已经知道哪些城市之间可以修路,如果修路,花费是多少。
现在,军师小工已经找到了一种修路的方案,能够使各个城市都联通起来,而且花费最少。
但是,南将军说,这个修路方案所拼成的图案很不吉利,想让小工计算一下是否存在另外一种方案花费和刚才的方案一样,现在你来帮小工写一个程序算一下吧。
-
输入
-
第一行输入一个整数T(1<T<20),表示测试数据的组数
每组测试数据的第一行是两个整数V,E,(3<V<500,10<E<200000)分别表示城市的个数和城市之间路的条数。数据保证所有的城市都有路相连。
随后的E行,每行有三个数字A B L,表示A号城市与B号城市之间修路花费为L。
输出
- 对于每组测试数据输出Yes或No(如果存在两种以上的最小花费方案则输出Yes,如果最小花费的方案只有一种,则输出No) 样例输入
-
2 3 3 1 2 1 2 3 2 3 1 3 4 4 1 2 2 2 3 2 3 4 2 4 1 2
样例输出
-
No Yes
分析:用kruskal算法先求最小生成树,标记出构成最小生成树边,然后枚举这些边,每次删一条,然后求一次生成树,将其值保存起来。求完之后,把删除的边补回去。进行下一次删边,枚举过程中保存最小值,如果最小值跟原来的最小生成树的值相等的话,则说明,该最小生成不唯一,反之唯一。
#include<stdio.h> #include<string.h> #include<math.h> #include<iostream> #include<algorithm> using namespace std; struct edge { int u,v,cost,flag; bool operator < (const edge &w)const //按费用由小到大排序 { return cost < w.cost; } }a[200010]; int n,m; int p[510]; void init(int n)//并查集初始化 { for(int i = 0;i <= n;i++) p[i] = i; } int Find(int x) // 并查集查找 { while(x != p[x]) { x = p[x]; } return x; } int isok()//用并查集判断所有的点是否连通 { int w = Find(1); for(int i = 2;i <= n;i++) { if(Find(i) != w) return 0; } return 1; } int kruskal(int k) { int sum = 0; init(n);//初始化 for(int i = 0;i < m;i++) { if(i != k)//去掉k这条边 { int x = Find(a[i].u); int y = Find(a[i].v); if(x != y) { sum += a[i].cost; p[x] = y; } } } if(isok())//如果是生成树,则返回其权值 return sum; else return -1; } int main() { int t; scanf("%d",&t); while(t--) { scanf("%d %d",&n,&m); for(int i = 0;i < m;i++) { scanf("%d %d %d",&a[i].u,&a[i].v,&a[i].cost); a[i].flag = 0; } init(n);//初始化 sort(a,a + m); int ans = 0; for(int i = 0;i < m;i++) { //用并查集判断u,v是否属于同一连通分量,即判断是否产生圈 int x = Find(a[i].u); int y = Find(a[i].v); if(x != y) //如果不在一个连通分量 { ans += a[i].cost;//将权值加入结果中 p[x] = y;//合并连通分量 a[i].flag = 1;//将加入集合的边进行标记 } } int flag = 0; for(int i = 0;i < m;i++) { if(a[i].flag == 1) //去掉求得的最小生成树中的一条边,重新求取最小生成树 { if(kruskal(i) == ans)//如果求得的结果跟之前的相等 { flag = 1;//表示次小生成树存在 break; } } } if(flag) printf("Yes\n"); else printf("No\n"); } return 0; }
-
第一行输入一个整数T(1<T<20),表示测试数据的组数