问题及代码:
/*
* Copyright (c) 2016, 烟台大学计算机与控制工程学院
* All rights reserved.
* 文件名称:Cube007.cpp
* 作 者:刘小楠
* 完成日期:2016年11月3日
*
* 问题描述:实现二叉树的先序、中序、后序遍历的递归算法,并对用”A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))”创建的二叉树进行测试。
* 输入描述:无
* 输出描述:结果
*/
btree.h
#ifndef BTREE_H_INCLUDED
#define BTREE_H_INCLUDED
#define MaxSize 100
typedef char ElemType;
typedef struct node
{
ElemType data; //数据元素
struct node *lchild; //指向左孩子
struct node *rchild; //指向右孩子
} BTNode;
void CreateBTNode(BTNode *&b,char *str); //由str串创建二叉链
BTNode *FindNode(BTNode *b,ElemType x); //返回data域为x的节点指针
BTNode *LchildNode(BTNode *p); //返回*p节点的左孩子节点指针
BTNode *RchildNode(BTNode *p); //返回*p节点的右孩子节点指针
int BTNodeDepth(BTNode *b); //求二叉树b的深度
void DispBTNode(BTNode *b); //以括号表示法输出二叉树
void DestroyBTNode(BTNode *&b); //销毁二叉树
#endif // BTREE_H_INCLUDED
btree.cpp
#include <stdio.h>
#include <malloc.h>
#include "btree.h"
void CreateBTNode(BTNode *&b,char *str) //由str串创建二叉链
{
BTNode *St[MaxSize],*p=NULL;
int top=-1,k,j=0;
char ch;
b=NULL; //建立的二叉树初始时为空
ch=str[j];
while (ch!='\0') //str未扫描完时循环
{
switch(ch)
{
case '(':
top++;
St[top]=p;
k=1;
break; //为左节点
case ')':
top--;
break;
case ',':
k=2;
break; //为右节点
default:
p=(BTNode *)malloc(sizeof(BTNode));
p->data=ch;
p->lchild=p->rchild=NULL;
if (b==NULL) //p指向二叉树的根节点
b=p;
else //已建立二叉树根节点
{
switch(k)
{
case 1:
St[top]->lchild=p;
break;
case 2:
St[top]->rchild=p;
break;
}
}
}
j++;
ch=str[j];
}
}
BTNode *FindNode(BTNode *b,ElemType x) //返回data域为x的节点指针
{
BTNode *p;
if (b==NULL)
return NULL;
else if (b->data==x)
return b;
else
{
p=FindNode(b->lchild,x);
if (p!=NULL)
return p;
else
return FindNode(b->rchild,x);
}
}
BTNode *LchildNode(BTNode *p) //返回*p节点的左孩子节点指针
{
return p->lchild;
}
BTNode *RchildNode(BTNode *p) //返回*p节点的右孩子节点指针
{
return p->rchild;
}
int BTNodeDepth(BTNode *b) //求二叉树b的深度
{
int lchilddep,rchilddep;
if (b==NULL)
return(0); //空树的高度为0
else
{
lchilddep=BTNodeDepth(b->lchild); //求左子树的高度为lchilddep
rchilddep=BTNodeDepth(b->rchild); //求右子树的高度为rchilddep
return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);
}
}
void DispBTNode(BTNode *b) //以括号表示法输出二叉树
{
if (b!=NULL)
{
printf("%c",b->data);
if (b->lchild!=NULL || b->rchild!=NULL)
{
printf("(");
DispBTNode(b->lchild);
if (b->rchild!=NULL) printf(",");
DispBTNode(b->rchild);
printf(")");
}
}
}
void DestroyBTNode(BTNode *&b) //销毁二叉树
{
if (b!=NULL)
{
DestroyBTNode(b->lchild);
DestroyBTNode(b->rchild);
free(b);
}
}
main.cpp
#include <stdio.h>
#include "btree.h"
void PreOrder(BTNode *b) //先序遍历的递归算法
{
if (b!=NULL)
{
printf("%c ",b->data); //访问根节点
PreOrder(b->lchild); //递归访问左子树
PreOrder(b->rchild); //递归访问右子树
}
}
void InOrder(BTNode *b) //中序遍历的递归算法
{
if (b!=NULL)
{
InOrder(b->lchild); //递归访问左子树
printf("%c ",b->data); //访问根节点
InOrder(b->rchild); //递归访问右子树
}
}
void PostOrder(BTNode *b) //后序遍历的递归算法
{
if (b!=NULL)
{
PostOrder(b->lchild); //递归访问左子树
PostOrder(b->rchild); //递归访问右子树
printf("%c ",b->data); //访问根节点
}
}
int main()
{
BTNode *b;
CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");
printf("二叉树b:");
DispBTNode(b);
printf("\n");
printf("先序遍历序列:\n");
PreOrder(b);
printf("\n");
printf("中序遍历序列:\n");
InOrder(b);
printf("\n");
printf("后序遍历序列:\n");
PostOrder(b);
printf("\n");
DestroyBTNode(b);
return 0;
}
知识点总结
遍历是在所有的节点中查找某一个节点的最基础的运算,没有这个很多应用函数都不能进行。
学习心得
理解遍历画图最重要,但是我画了之后还是有些忘记.