第22课 贺中秋 --- 赏花灯

一、作品构思

 




二、显示贺中秋背景图

 




三、显示环形花灯

圆的颜色 



 




四、动态显示中心花灯

 




显身手







创意园

在中秋灯会上,小C创作的卡通人物在绚丽的舞台上跳起了动感十足的舞蹈动画,吸引了群众的围观。请参考案例,创作一个动画作品(见课本P257)




 第1课 网上科技展 --- 欣赏Go C编程作品

第1课 网上科技展 --- 欣赏Go C编程作品-CSDN博客

第2课 无人驾驶汽车 --- 前进、后退与转弯

第2课 无人驾驶汽车 --- 前进、后退与转弯-CSDN博客

第3课 氚气灯管 --- 设置颜色和粗细

第3课 氚气灯管 --- 设置颜色和粗细_《氚气灯管——设置颜色和粗细》-CSDN博客

第4课 交通安全警示系统( 画矩形与抬笔、落笔)

第4课 交通安全警示系统( 画矩形与抬笔、落笔)-CSDN博客

第5课 无叶风扇 --- 画实心与空心椭圆

第5课 无叶风扇 --- 画实心与空心椭圆-CSDN博客

第6课 无人机 --- 计算旋转角

第6课 无人机 --- 计算旋转角-CSDN博客

第7课 智能机器人 --- 调入与显示图片

第7课 智能机器人 --- 调入与显示图片-CSDN博客

第8课 全息投影 --- 输入与存放数据

第8课 全息投影 --- 输入与存放数据-CSDN博客

第9课 自动感应 --- 用if语句判断

第9课 自动感应 --- 用if语句判断-CSDN博客

第14课 迎新春 ---贴春联

第14课 迎新春 ---贴春联-CSDN博客










 一二三年级不要太关注成绩,关键是培养孩子的3个好习惯,2个能力

https://www.toutiao.com/article/7185798616341545507/

一二三年级不要太关注成绩,关键是培养孩子的3个好习惯,2个能力

https://www.toutiao.com/article/7185798616341545507/

小学一年级,到底是学习习惯重要还是学习方法重要?

小学一年级,到底是学习习惯重要还是学习方法重要? - 知乎

一二三年级不要太关注成绩,关键是培养孩子的3个好习惯,2个能力

一二三年级不要太关注成绩,关键是培养孩子的3个好习惯,2个能力|晨读|语文_网易订阅




为什么小学一二年级就可以学Go C编程(C++画图)呢?

为什么小学一二年级就可以学Go C编程(C++画图)呢?-CSDN博客

少儿编程启蒙书籍介绍(2024.02.01)

少儿编程启蒙书籍介绍(2024.02.01)-CSDN博客

小学二三年级入门信奥赛,如何从Scratch进入C++的学习

小学二三年级入门信奥赛,如何从Scratch进入C++的学习_小学可以考加信息学奥赛-CSDN博客

宝宝的编程系列书籍

宝宝的编程系列书籍-CSDN博客

少儿编程:C++绘图相关书籍篇

少儿编程:C++绘图相关书籍篇_c++ 青少年 教科书-CSDN博客




全国青少年信息学奥林匹克联赛

全国青少年信息学奥林匹克联赛_百度百科

全国青少年信息学奥林匹克竞赛

全国青少年信息学奥林匹克竞赛_百度百科

NOI全国青少年信息学奥林匹克竞赛(官网)

NOI全国青少年信息学奥林匹克竞赛




 NOI全国青少年信息学奥林匹克竞赛(官网)

NOI全国青少年信息学奥林匹克竞赛





















第24课 重阳敬老 --- 登高观日出

第24课 重阳敬老 --- 登高观日出-CSDN博客

第25课 喜迎元旦 --- 跨年倒数

第25课 喜迎元旦 --- 跨年倒数-CSDN博客

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dllglvzhenfeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值