总结
Dlyldxwl
这个作者很懒,什么都没留下…
展开
-
mobilenet, shufflenet 系列随笔
mobilenNet系列出自Goole,shuffleNet系列出自Face++,这两个公司的文章都是值得反复去揣摩的,去思考这些网络背后设计的出发点和设计的原则,而不是单纯停留在仅仅读懂网络结构而已。当然本文均为笔者自身理解,读者觉得有不妥当的地方,欢迎讨论。为了方便,以下简记mobileNet为m,shuffleNet为s。MobileNetm v1是直筒状结构,xception使...原创 2018-08-03 20:23:56 · 1953 阅读 · 1 评论 -
deeplab系列总结(deeplab v1& v2 & v3 & v3+)
最近花了几天时间把deeplab系列撸了一遍,直观感受是不如当初看RCNN系列来的激动啊......像RPN这种划时代的改变没有看到--直奔主题。Deeplab v1&v2paper:deeplab v1&& deeplab v2远古版本的deeplab系列,就像RCNN一样,其实了解了后面的v3和v3+就可以不太管这些了(个人拙见)。但是为了完整性和连贯性...原创 2018-07-21 21:34:15 · 61252 阅读 · 14 评论 -
BatchNorm 理解
BN可以说是NN发展中的一个里程碑式的结构了,不增加inference时间,调参变得简单,收敛更快效果更好。虽然提出的时间已经很久了,而且网上关于BN的解释一堆一堆的,但是博主觉得有不少解释是欠妥的,在此贴出博主贴出对caffe中BN源码的解释和自己对BN的理解,欢迎讨论。caffe中BN的实现比较反人类。BatchNorm层单纯实现标准化,再用一个scale层添加 参数,共同完成BN。...原创 2018-09-24 21:14:00 · 3831 阅读 · 9 评论 -
随笔记(二)
2018.06.03 Python代码生成prototxt如下代码生成peleenet.prototxt。Python文件和deploy文件的github 链接. 求个小心心 --#coding: utf-8#by Chen yhtran_channel = 32 #growth_rateclass Genpelee(): def __init__(s...原创 2018-06-03 20:22:52 · 2678 阅读 · 0 评论 -
VALSE2019小记
趁着有空去看了一波valse,和很多论文的作者当面讨论了一些问题,在此主要记录对一些paper的见解。1. FishNet: A Versatile Backbone for Image, Region, and Pixel Level Prediction根据欧阳万里老师介绍,这篇文章起初的motivation是希望将hourglass结构引入到分类网络中,看有没有效果,实验表明没...原创 2019-04-15 11:36:54 · 1590 阅读 · 0 评论