基于DBSCAN密度聚类的风电-负荷场景削减方法
关键词:密度聚类 场景削减 DBSCAN 场景生成与削减 kmeans
参考文档:《氢能支撑的风-燃气耦合低碳微网容量优化配置研究》第3章:完美复现
仿真平台:MATLAB
主要内容:代码主要做的是一个基于DBSCAN密度聚类的风电-负荷场景生成与削减模型,首先,采集风电、电负荷历史数据。
然后,通过采用 DBSCAN 密度聚类的数据预处理消除异常或小概率电负荷、风电数据。
之后,针对风电波动性与电负荷时序性、周期性特点,将场景提取分为电负荷场景提取和风电场景提取。
不同于传统的Kmeans方法,此方法更加具有创新性,场景模型与提取更具有代表性,代码非常精品,注释保姆级
基于DBSCAN密度聚类的风电-负荷场景削减方法
在能源领域的发展中,风能的利用已经越来越受到了人们的关注。而对于风电场景的生成与削减,则是风电领域中一个非常重要的问题。现在,我们提出一种基于DBSCAN密度聚类的风电-负荷场景削减方法,该方法比传统的KMeans方法更加具有创新性。
首先,我们需要采集风电、电负荷的历史数据,这是场景削减的基础。经过数据预处理后,我们将采用DBSCAN密度聚类的方法进行场景削减。
DBSCAN算法,即基于密度的聚类算法,它将数据点分为不同的聚类,每个聚类由一个或多个密度相连的点组成。该算法的主要思想是通过密度来判断一个点是否属于某个聚类,即若一个点周围的密度大于某个阈值,则该点为核心点;若一个点周围的密度小于某个阈值,但它与某个核心点密度相连,则该点为边界点;若一个点周围的密度小于某个阈值,并且它与任意核心点不密度相连,则该点为噪声点。利用DBSCAN算法,我们可以有效地对场景数据进行分类,并将一些无关的数据点去除。
在进行场景生成与削减时,我们需要针对风电波动性与电负荷时序性、周期性特点进行场景提取。因此,我们将场景提取分为电负荷场景提取和风电场景提取。
在电负荷场景提取方面,我们将历史负荷数据进行DBSCAN场景分类分析,并且针对异常或小概率电负荷进行预处理,从而获得具有代表性的电负荷场景。同时,在风电场景提取方面,我们也将利用DBSCAN算法对历史风电数据进行场景分类分析,从而得到具有代表性的风电场景。
然后,我们可以根据场景数目和大小进行场景削减,去掉不必要的场景,从而达到场景削减的目的。与传统的KMeans方法相比,该方法更具有代表性和创新性。我们的代码非常精品,注释保姆级,使用MATLAB作为仿真平台进行代码实现。
综上所述,基于DBSCAN密度聚类的风电-负荷场景削减方法是一种非常实用的方法,它可以有效地进行场景削减,从而提高风电领域的工作效率。
相关代码,程序地址:http://lanzouw.top/692197803121.html