堆排序(java)

说明:

  • 大顶堆
  • 待排队列的第一个元素下标为0(要注意与下标为1的不同

整体过程

  1. 建堆(buildHeap)
  2. 移动元素(exchange)
  3. 保持剩余元素堆的属性(maxMaintainProperty)

注意:写算法时所出现的错误

  • 不要把队列的长度(length)与需要建堆的队列的长度(heapLength)混淆:length长度不变,heapLength在堆排序的过程中变小:  heapLength<=length
  • 弄清每个循环的开始和结束
      排序循环结束点为要排序队列的剩1个元素还没排序
  • 防止在维护堆的属性函数中把递归点设置在判断是否largest等于start之外
    if(largest!=start) {
       exchange(list, start, largest);
       maxMaintainProperty(list, largest,end);//不要写在if语句之外
     }
  • 细节必须注意:如果队列第一个元素的下标是0,一定要在维护堆属性函数中得出左孩子(或右孩子)下标不是2*i,而是2*i+1

源码:

 错误的:虽然调试中用的测试数据最终结果没有出现错误

 

 

正确的代码:

### Java实现堆排序算法 堆排序是一种基于二叉数据结构的高效排序算法,其核心思想是利用最大或最小来完成数组的有序排列。以下是通过Java实现堆排序的具体代码以及详细的解释。 #### 1. 堆排序的核心逻辑 堆排序分为两个主要阶段:构建初始和调整。 - **构建初始**:将无序序列构建成一个大顶(假设升序排序)。 - **调整**:交换顶元素与最后一个节点的位置,并重新调整剩余部分为新的大顶,重复此过程直到整个序列有序[^1]。 #### 2. Java实现堆排序的代码示例 以下是一个完整的Java程序,用于实现堆排序: ```java public class HeapSort { public static void main(String[] args) { int[] array = {4, 10, 3, 5, 1}; System.out.println("原始数组:"); printArray(array); heapSort(array); System.out.println("排序后的数组:"); printArray(array); } // 打印数组的方法 private static void printArray(int[] array) { for (int value : array) { System.out.print(value + " "); } System.out.println(); } // 堆排序方法 public static void heapSort(int[] array) { int n = array.length; // 构建初始的最大 for (int i = n / 2 - 1; i >= 0; i--) { adjustHeap(array, i, n); } // 调整并逐步缩小范围 for (int i = n - 1; i > 0; i--) { swap(array, 0, i); // 将当前最大的放到最后面 adjustHeap(array, 0, i); // 对剩下的元素重新调整成最大 } } // 调整的方法 private static void adjustHeap(int[] array, int index, int length) { int largest = index; int leftChild = 2 * index + 1; int rightChild = 2 * index + 2; if (leftChild < length && array[leftChild] > array[largest]) { largest = leftChild; } if (rightChild < length && array[rightChild] > array[largest]) { largest = rightChild; } if (largest != index) { swap(array, index, largest); adjustHeap(array, largest, length); // 继续向下调整子树 } } // 数组元素交换方法 private static void swap(int[] array, int i, int j) { int temp = array[i]; array[i] = array[j]; array[j] = temp; } } ``` #### 3. 关键点解析 - **adjustHeap 方法** 是堆排序中的核心函数,负责维护的性质。每次调用该方法都会确保指定索引位置上的元素满足父节点大于等于子节点的要求[^2]。 - **heapSort 方法** 首先通过 `for` 循环自底向上建立初始的大顶;随后通过不断交换根节点与最后一个叶子节点的方式逐渐减少待排序区域大小,并持续调整以保持顺序[^3]。 #### 4. 时间复杂度分析 堆排序的时间复杂度为 O(n log n),其中 n 表示输入数组长度。这是因为每轮调整都需要对高度为 log n 的完全二叉树进行遍历,而总共有 n 次这样的操作[^4]。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值