图像分割的一些简单实现

图像分割中阈值的自动选取的研究及其算法实现

图像分割是图像处理这门学科中的基础难题,基于阈值的分割则又是图像分割的最基本的难题之一,其难点在于阈值的选取。事实证明,阈值的选择的恰当与否对分割的效果起着决定性的作用。由于阈值选取对图像分割的基础性,本文主要在【1】、【2】、【3】、【4】等的基础上,对一些当前流行的阈值选取算法做了探讨、实现和比较。多阈值分割虽然能进一步提高图像分割的质量,但由于它只是分割技巧的处理问题,而与单阈值分割并无本质的区别。因此本文并不对多阈值分割进行讨论,而只考虑单阈值分割的情形。

1.  双峰法

双峰法的原理及其简单:它认为图像由前景和背景组成,在灰度直方图上,前后二景都形成高峰,在双峰之间的最低谷处就是图像的阈值所在。根据这一原理,我们给出了它的实现,部分代码如下(Pascal语言描述,以下同):

//intPeakintPeak2intValley:峰值和直方图值

//intIndx::相应的灰度值

intPeak,intIndx,intPeak2,intIndx2,intValley,intValleyIndx:integer;

//初始双峰值

    intPeak:=0;

    intPeak2:=0;

 

//取得第一峰值

    for intLoop:=0 to 255 do

      if intPeak<=intGrayLevel[intLoop] then

      begin

        intPeak:=intGrayLevel[intLoop];

        intIndx:=intLoop;

      end;

 

//取得第二峰值

    for intLoop:=0 to 255 do

    Begin

      if (intPeak2<=intGrayLevel[intLoop]) and (intLoop<>intIndx) then

      begin

        intPeak2:=intGrayLevel[intLoop];

        intIndx2:=intLoop;

      end

    end;

 

//取得双峰之间的谷值

    intValley:=intSize;

    if intIndx2<intIndx then

      for intLoop:=intIndx2 to intIndx do

        if intValley>intGrayLevel[intLoop] then

        begin

          intValley:=intGrayLevel[intLoop];

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Transformer是一种非常强大的神经网络架构,最初是为自然语言处理任务设计的。然而,近年来,人们开始将Transformer应用于计算机视觉任务,比如图像分割。 在传统的图像分割方法中,常用的是基于卷积神经网络(Convolutional Neural Networks, CNNs)的方法,如U-Net、FCN等。而基于Transformer的图像分割方法则是通过将图像划分为一系列的小块,并使用Transformer进行像素级别的分类和预测。 具体实现图像分割的Transformer网络架构有不同的变种,但一般包含以下步骤: 1. 数据预处理:首先,需要将图像划分为小块,这些小块称为图像的“补丁”(patches)。每个补丁都是一个包含图像中一部分像素值的小矩阵。 2. 特征提取:接下来,对于每个补丁,使用一个预训练的卷积神经网络(如ResNet)来提取特征。这些特征将作为输入传递给Transformer模型。 3. Transformer编码器:通过将特征向量输入Transformer编码器中,对图像中每个位置进行特征编码,并利用自注意力机制来捕捉全局上下文信息。 4. 解码器和预测:在编码器的输出上,可以使用解码器来生成分割掩码。解码器可以是一个简单的全连接层,也可以是一个带有Transformer结构的神经网络。最终,使用像素级别的分类器对每个补丁进行预测,得到最终的分割结果。 需要注意的是,由于Transformer在处理图像时需要大量的计算资源和内存,因此在实际应用中,人们通常会使用一些技巧和优化方法来加速和改进图像分割的性能。 希望我对你的问题有所帮助!如果你还有其他问题,请随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值