问题描述:设a[0:n-1]是有n个元素的数组,k(0<=k<=n-1)是一个非负整数。试设计一个算法将子数组a[0:k-1]与a[k:n-1]换位。要求算法在最坏时间情况下耗时O(n),且只用到O(1)的辅助空间。
基本概念:数组换位是啥概念?(low = 0, k = 1, high = 6)
1 2 | 3 4 5 6 7 换位后变为 3 4 5 6 7 | 1 2
问题分析:(所有下标从0开始)一看这个题,我们都会想到把数组直接向后挪,最后一个数回到第一个位置,循环五次就可以做到,但这样最坏时间复杂度达到O(n^2),不符合题目要求,如果我们把问题细化,运用分治的思想看这个问题就可以解决。
这个问题为什么可以用分治法?我通过一个特例来说明一下:
左边存放一个元素的数组其实相当于一个暂存变量的数组,它有两个作用:
①:存储最终换位好的大数组的第一个元素;