Coursera Princeton Algorithm II - Week 1

好几天没有po文章了,泪奔,腐败了一个周末。

今天早上在一家咖啡店待了3个小时,总算把第一周的作业搞定了。

Coursera普林斯顿那门算法课真的超级好,讲得十分清晰!algorithm I上完之后就十分期待algorithm II,果然还是很高质量。

========================================================

先来简单复习一下BFS和DFS算法[1]:

// bfs
Queue<Integer> q = new Queue<Integer>();
q.enqueue(s);
marked[s] = true;
while(!q.empty()) {
	int v = q.dequeue();
	for (int w : G.adj(v)) {
		if (!marked[w]) {
			q.enqueue(w);
			marked[w] = true;
			edgeTo[w] = v;
		}
	}
}

// dfs
dfs(v) {
	marked[v] = true;
	for (int w : G.adj(v)) {
		if (!marked[w]) {
			edgeTo[w] = v;
			dfs(w);
		}
	}
}

========================================================

再来看看两个比较重要的有向图算法:

topological order def:

u comes before v if u point to v
// topo order
拓扑排序

假设有一系列课程[1]:

0. Algo
1. complexity theory
2. artificial intelligence
3. intro to cs
4. cryptography
5. scientific computing
6. advanced programming

假设这些课程有优先关系,比如要想选artificial intelligence就必须修过Intro to CS这门课[1]:


那么用拓扑排序就可以得到修课的先后顺序[1]:


算法:

use dfs & a stack, when dfs(v) return, put v in the stack
if can't reach {w1, w2, ..., wn} from v, dfs(w1)
pop from the stack and that's the topo order

// strong connected component (scc)
scc的定义是,在这个集合里面,从任何一个点出发都可以到达另外一个点。
一个有向图可以被分割为N个scc模块。
Kosaraju-Sharir algorithm[1]
#1 run DFS on G-Reverse to get the topological order
#2 run DFS/BFS on G using the previous topological order 


这里讲得比较粗略,具体可以看reference[1]里面有课件链接。


========================================================

assignment 1

作业是写一个wordNet的应用,用来进行计算语源学的分析。
我做一下简要的介绍这个wordNet,楼主不是学语源学的,只是来复述一下作业里面的描述:词语之间是有关系的,比方说斑马、老虎这一类同义词(synonym)的上义词(hypernyms)是动物。整个wordNet就是一个由这些词语(认为是点)和关系(认为是边)组成的巨大词语网络,我们作业只处理名词这一部分,名词的词根是entity。

对作业有兴趣的可以参考这个链接assignment1_wordNet

Solution:

[1] data structure

重要的数据结构有这三个:
private HashMap<String, ArrayList<Integer>> strIdMap; // 存每个单词以及对应的id,注意,有些单词可能有多个id,因为同一个单词有不同含义
private ArrayList<String> strs; // 每个id对应的同义词集合
private Digraph G; // 表示wordNet的有向图

[2]algorithm:

有个核心的部分是计算两个词语离ancestor最近的距离以及这个ancestor,其实就是计算有向图里面,两个点v, w的共同ancestor与v, w之间的距离的和的最小值。
我使用的算法是分别对v和w跑一次bfs,对于v点,我们就可以知道任意一点u和v之间的距离,对于w也有同样的信息。

然后对有向图的所有点再遍历一次,每次遍历都计算(u,v)+(u,w)取最小值就可以了。


其实作业还有一些extra credit是给improvement的,楼主比较懒,pass所有的test cases就不管了,这是作业的github link,大虾们轻拍:assignment1_dmsehuang


参考:

[1] algorithm_week1_lecture_reference

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值