威尔逊定理证明:

威尔逊定理:当( p -1 )! ≡ -1 ( mod p ) 时,p为素数。

证明如下

充分性:

当p不是素数,那么令p=a * b ,其中1 < a < p - 1 ,1 < b < p - 1.

  (1)若a ≠ b ,

  因为(p - 1) !=1 * 2 * ... * a * ... * b * ... * p - 1 ,

  所以(p-1) ! ≡ 0 (mod a)

     (p-1) ! ≡ 0 (mod b)

   可得(p-1)!≡ 0 (mod a * b) ,

    即 (p-1)!≡ 0 (mod p)

   与( p -1 )! ≡ -1 ( mod p ) 矛盾

  (2)若a=b

   因为(p-1)!=1 * 2 * ... * a * ... * 2a * ... * p - 1 .

   所以(p-1)!≡ 0 (mod a)

     (p-1)!≡ 0 (mod 2a)

    可得(p-1)!≡ 0 (mod a * 2a) => (p-1)!≡ 0 (mod a * a) ,

   即 (p-1)!≡ 0 (mod p)

   与( p -1 )! ≡ -1 ( mod p ) 矛盾

因此p只能是素数。

必要性:

 当p为2,( p -1 )! ≡ -1 ( mod p ) 显然成立

 当p为3,( p -1 )! ≡ -1 ( mod p ) 显然成立

 对于p>=5,令M={2,3,4,...,p-2}.

  对于a∈M,令N={a,2 * a,3 * a,4 * a,....(p-2) * a,(p-1) * a}

  令1 <= t1 <= p-1 ,1 <= t2 <= p-1,t1 ≠ t2

  那么t1 * a∈N,t2 * a∈N。

  若t1 * a≡t2 * a (mod p) ,那么|t1-t2| * a ≡ 0 (mod p)。

  因为|t1-t2| * a∈N,与N中元素不能被p除尽矛盾。

  所以t1 * a≡t2 * a不成立。

  那么N中元素对p取模后形成的集合为{1,2,3,4,...,p-1}.

  设x * a ≡ 1 (mod p)。

     当x=1时, x * a=a, 对p取模不为1,所以不成立。

     当x=p-1时,(p-1) * a=p * a - a, 对p取模不为1,所以不成立。

     当x=a时,a * a≡1 (mod p),可得(a+1) * (a-1)≡ 0 (mod p),a=1或a=p-1 ,所以不成立。

   综上所述,x,a∈M,并且当a不同时,x也随之不同。

   所以,M集合中每一个元素a都能够找到一个与之配对的x,使得x * a ≡ 1 (mod p).

   (p-1)!=1 * 2 * 3 * ... p - 1

     =1(2x1)(3x3)...(p-1)

   所以, (p-1)!≡1*(p-1) (mod p)

   即,(p-1)!≡-1 (mod p)

 证明完毕

转载于:https://www.cnblogs.com/mitnick/p/11586921.html

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值