MXNet学习8——自己写operator实现Logistic Regression

概要上一篇博客介绍了Logistic Regression,其中最主要的symbol是官方已经实现好的例子,不知道细节是怎么样的,而且结果看着十分奇怪,所以打算自己实现一个,参考官方的例子,How to Create New Operators (Layers) 。官方的教程太少且太简单,不去看底...

2017-05-08 20:36:04

阅读数 1909

评论数 0

MXNet学习7——Logistic Regression

概要之前介绍了Linear Regression,其实也是官方教程的代码,这里对照着原有的线性回归实现 Logistic Regression

2017-05-07 21:37:48

阅读数 783

评论数 0

numpy.unravel_index 说明

对numpy.unravel_index 的使用说明

2017-04-20 10:59:44

阅读数 9193

评论数 0

理解word2vec的训练过程

生成词向量是自然语言处理中的基本过程,此前对此只知道使用但是一直不知道其原理。 最近补补课,仔细学习了wordvec,上网查资料的时候发现很多博客资料上讲到的主要是理论,不好全面理解;而对于介绍应用的文章又偏重于某个工具的使用而不是训练的细节,所以特别参考了Tensorflow上的实现写下本篇文章...

2017-04-09 17:29:39

阅读数 11211

评论数 5

MXNet学习6——Linear Regression

概要前面的文章介绍了MXNet的基础知识,类似于语法知识,这一节介绍MXNet使用机器学习的一个基本模型–线性回归。线性回归内部的具体实现不会涉及,我们是在上层使用,而MXNet这类的深度学习框架意义就在这里。

2017-03-14 20:53:22

阅读数 1764

评论数 1

MXNet学习5——Data Parallelism with Multi-devices

概要上一篇文章讲到Mixed Programing,主要描述了混合Symbol和NDArray从头搭建网络并训练,这一篇紧接上文介绍MXNet中如何设计程序并行训练。官方代码请看这里正文MXNet是可以自动将计算并行化的,如果有多个设备可用。这使得在MXNet上开发并行程序与跟串行程序一样简单。

2017-03-11 13:20:44

阅读数 512

评论数 0

MXNet学习4——Mixed Programing

概要前面的文章中讲到了Symbol和NDArray,介绍了如何从零开始训练神经网络。这种混杂风是MXNet相较与其他深度学习框架的不同的地方,值得一提的是MXNet名字中的”MX”同样也蕴含着混合(mixed)的意思。

2017-03-10 20:38:28

阅读数 627

评论数 0

MXNet学习3——Symbol

概要本节介绍MXNet中的Symbol(模块)。Symbol是MXNet中另一个重要的概念,可以通过 mxnet.symbol 或者 mxnet.sym 使用。一个symbol表示一个具有多输出的符号表达式,表达式由多个运算组成,运算可以是简单的矩阵和(“+”),也可以是一个神经网络层(比如卷积层...

2017-03-08 19:37:50

阅读数 1929

评论数 0

MXNet学习2——Module

概要本节介绍MXNet中一个重要的概念,Module(模块),涉及到的内容包括简单的神经网络,模型的构造,参数的训练以及更新,模型预测等。通过本节大概了解Module中一些重要的属性和方法,对于MXNet的机制有初步的了解,需要注意的是本节代码跳过了官方tutorial中存储部分,有些说明部分没有...

2017-03-07 21:42:23

阅读数 1697

评论数 0

MXNet学习1——数据模拟

MXNet学习系列之一,小白的学习历程,以官方代码为例子,尽可能通俗的语言进行解释,欢迎拍砖讨论

2017-03-07 11:27:15

阅读数 863

评论数 0

Centos7下joshua6.0.5完整的安装过程

Centos7下joshua6.0.5的安装

2017-03-05 21:49:18

阅读数 200

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭