HDU 1027

本来是说做搜索的,突然看到一道组合的题目,不A,心里毕竟有点不爽。。。。记得以前上组合数学课的时候说过一个字典序的生成方式,不过时间比较远,想不起来咯,只好又去看了看,现在记录一下,以后忘了还能看到。

字典序算法如下:
设P是1~n的一个全排列:p=p1p2......pn=p1p2......pj-1pjpj+1......pk-1pkpk+1......pn
1)从排列的右端开始,找出第一个比右边数字小的数字的序号j(j从左端开始计算),即 j=max{i|pi<pi+1}
2)在pj的右边的数字中,找出所有比pj大的数中最小的数字pk,即 k=max{i|pi>pj}(右边的数从右至左是递增的,因此k是所有大于pj的数字中序号最大者)
3)对换pi,pk
4)再将pj+1......pk-1pkpk+1pn倒转得到排列p'=p1p2.....pj-1pjpn.....pk+1pkpk-1.....pj+1,这就是排列p的下一个下一个排列。
例如839647521是数字1~9的一个排列。从它生成下一个排列的步骤如下:
自右至左找出排列中第一个比右边数字小的数字4 839647521
在该数字后的数字中找出比4大的数中最小的一个5 839647521
将5与4交换 839657421
将7421倒转 839651247
所以839647521的下一个排列是839651247。

一步步的照着算法写下来就AC咯

 

#include<iostream>
using namespace std;
int arrange[1005];

void init(int n)
{
    for(int i = 1; i <= n; ++i)
    {
        arrange[i] = i;      
    }     
}

void find(int n, int m)
{
     int i, p, j, k, c, c2, temp, q;
    
    for(p = 0; p < m; ++p)
    {
       for(j = n-1; j >= 1; j--)
       {
           if(arrange[j] < arrange[j+1]) 
           {
                c = j;
                break;
           }      
       }   
       
       for(k = c+1; k <= n; ++k)
       {
           if(arrange[k] > arrange[c])
           {
               c2 = k;
           }
           else break;      
       }  
       
       
       temp = arrange[c2];
       arrange[c2] = arrange[c];
       arrange[c] = temp;
       
       
       for(j = c+1; j <= (c+1+n)/2; ++j)
       {
           temp = arrange[j];
           q = n-(j-c-1);
           arrange[j] = arrange[q];
           arrange[q] = temp;      
       }              
    }        
       
}
int main()
{
    int n, m, i, t;
    
    while(cin>>n>>m)
    {
        init(n);
        find(n, m-1);   
        for(i = 1; i <= n; ++i)
        {
           if(i != n) cout<<arrange[i]<<" ";
           else cout<<arrange[i]<<endl;
        }       
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值