关于python中的随机种子——random_state

random_state是Python中用于控制随机模式的种子,它在train_test_split、决策树和随机森林等函数中起到关键作用。设置特定的random_state值能确保每次运行结果一致,便于结果复现和代码对比。未设定时,结果会因随机种子的不同而变化,可能导致模型在不同数据集上的表现差异。
摘要由CSDN通过智能技术生成

random_state是一个随机种子,是在任意带有随机性的类或函数里作为参数来控制随机模式。当random_state取某一个值时,也就确定了一种规则。

random_state可以用于很多函数,我比较熟悉的是用于以下三个地方:1、训练集测试集的划分 2、构建决策树 3、构建随机森林

1、划分训练集和测试集的类train_test_split

  随机数种子控制每次划分训练集和测试集的模式,其取值不变时划分得到的结果一模一样,其值改变时,划分得到的结果不同。若不设置此参数,则函数会自动选择一种随机模式,得到的结果也就不同。

2、构建决策树的函数

clf = tree.DecisionTreeClassifier(criterion="entropy",random_state=30,splitter="random"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值