- 博客(12)
- 收藏
- 关注
原创 目标检测中的知识蒸馏方法
知识蒸馏知识蒸馏指的是模型压缩的思想,用压缩之前的模型作为老师,压缩之后的模型作为学生,通过一步一步地使用一个较大的已经训练好的网络去教导一个较小的网络确切地去做什么。“软标签”指的是大网络在每一层卷积后输出的feature map。然后,通过尝试复制大网络在每一层的输出(不仅仅是最终的损失),小网络被训练以学习大网络的准确行为。...........................
2022-07-27 23:59:40 13273 2
原创 【C++基础】知识点总结和题目记录
可用作C++语言用户标识符的一组标识符是( B)。C++标识符规则:标识符由字母数字下划线_组成;首字符不能是数字面关于break语句的描述中,不正确的是( D )A. break可以用于循环体内B. break语句可以在for循环语句中出现多次C. break语句可以在switch语句中出现多次D. break语句可用于if条件判断语句内下面关于数组的描述错误的是( D )A. 在c++语言中数组的名字就是指向该数组第一个元素的指针。
2023-07-14 17:51:12 417 1
原创 mmdetection目标检测模型最强优化
本文用SwinTransformer作为Backbone,FPN作为Neck,TOOD模型作为Bbox_head,并加入一系列的模型调优策略,得到目前单GPU最优精度模型。
2022-08-14 13:19:02 5193 18
原创 【操作系统和Linux】
包括操作系统基础原理,如:用户态与内核态、Linux内核的同步机制、虚拟内存、进程、死锁,以及linux的常用指令和anaconda环境相关指令。
2022-07-28 14:18:59 463
原创 配置MMdetection环境并训练
配置MMdetection环境(以VFNet为例)建议优先使用官网的方法哦,链接放在下面了!https://github.com/open-mmlab/mmdetection/blob/master/docs/get_started.md1、先创建一个conda环境并激活它conda create -n open-mmlab python=3.7 -yconda activate open-mmlab2、安装PyTorch 和 torchvision,根据cuda和pytorch版本安
2021-05-28 14:01:31 2448 2
原创 Generalized Focal Loss 论文阅读笔记
**Generalized Focal Loss 论文阅读笔记2020**1、问题的提出问题一:训练测试不一致,具体表现在两个方面:1、训练的时候,box分类和box回归是隔开的,但测试的时候却又是乘在一起作为NMS score排序的依据,没有end-to-end,就会存在一定的gap。2、分类分支能够从Focal loss中选出合适的正负样本训练,但是质量估计一般只针对正样本训练。这样就会带来一个问题,如果一个负样本的质量score很高、分类分数低(这没问题),它的总得分就可能超过正样本。NM
2021-05-15 15:35:12 248
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人