A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
class Solution {
public:
int dp[101][101];
int uniquePaths(int m, int n) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if(m < 1 || n < 1)return 0;
for(int i = 1; i <= m; ++i){
dp[i][1] = 1;
}
for(int j = 1; j <= n; ++j){
dp[1][j] = 1;
}
for(int i = 2; i <= m; ++i)
for(int j = 2; j <= n; ++j)
dp[i][j] = dp[i][j-1]+dp[i-1][j];
return dp[m][n];
}
};
PS:高中排列组合做过这道题,答案是C(m-1, m+n-2)