人工智能
文章平均质量分 81
docrazy5351
H公司研发工程师,喜欢研究机器学习、神经网络的前沿算法&图像处理算法
简书主页:https://www.jianshu.com/u/67426bc5bd59
知乎主页:https://www.zhihu.com/people/zhang-lei-63-74-59/activities
CSDN主页:http://blog.csdn.net/docrazy5351
展开
-
残差网络ResNet解读(原创)
Deep Residual Learning for Image Recognition原文链接:https://arxiv.org/pdf/1512.03385.pdf残差网络(ResNet)是微软亚洲研究院的何恺明、孙剑等人2015年提出的,它解决了深层网络训练困难的问题。利用这样的结构我们很容易训练出上百层甚至上千层的网络。要理解ResNet首先要理解网络变深后会带来什么样的原创 2018-01-07 10:19:42 · 11493 阅读 · 3 评论 -
Inception-v2/v3结构解析(原创)
https://arxiv.org/pdf/1512.00567.pdfSzegedy在2015年发表了论文Rethinking the Inception Architecture for Computer Vision,该论文对之前的Inception结构提出了多种优化方法,来达到尽可能高效的利用计算资源的目的。作者认为随意增大Inception的复杂度,后果就是Inception的错原创 2018-01-07 10:07:54 · 4955 阅读 · 0 评论 -
Inception-v4与Inception-ResNet结构详解(原创)
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning,原文链接:https://arxiv.org/pdf/1602.07261.pdf微软亚洲研究院的何恺明在2015年提出了震惊业界的ResNet结构,这种结构和以往的Inception结构走了两条不同的道路:前者主要关注加大网络原创 2018-01-07 10:25:19 · 3992 阅读 · 0 评论 -
解读DenseNet(原创)
Densely Connected Convolutional Networks,原文链接:https://arxiv.org/pdf/1608.06993.pdf自从2016年何恺明大神提出ResNet后,众多神经网络的研究者似乎突然悟到了很多,各种利用short path来提升性能的结构如雨后春笋,层出不穷。有点名头的比如Stochastic depth、FractalNets,影响最原创 2018-01-07 10:28:10 · 1295 阅读 · 1 评论 -
解读Dual Path Networks(DPN,原创)
Dual Path Networks,论文链接:https://arxiv.org/pdf/1707.01629.pdfResNet和DenseNet是近几年两种比较热门的网络结构,ResNet把输入直接加到(element-wise adding)卷积的输出上,DenseNet则把每一层的输出都拼接(concatenate)到了其后每一层的输入上。在这篇论文中作者用High Order原创 2018-01-07 10:30:07 · 3382 阅读 · 1 评论 -
解读Squeeze-and-Excitation Networks(SENet)
Squeeze-and-Excitation Networks(SENet)是由自动驾驶公司Momenta在2017年公布的一种全新的图像识别结构,它通过对特征通道间的相关性进行建模,把重要的特征进行强化来提升准确率。这个结构是2017 ILSVR竞赛的冠军,top5的错误率达到了2.251%,比2016年的第一名还要低25%,可谓提升巨大。这么大的提升是怎么来的呢?今天就来介绍下这个冠军背后的原原创 2018-01-07 10:32:51 · 1650 阅读 · 0 评论 -
从结构、原理到实现,Faster R-CNN全解析(原创)
论文链接 Faster R-CNN Towards Real-Time Object:https://arxiv.org/pdf/1506.01497.pdftensorflow源码链接:https://github.com/smallcorgi/Faster-RCNN_TFFaster R-CNN是目标检测界的大神Ross Girshick 2015年提出的一个很经典的检测结原创 2018-01-07 10:34:56 · 2005 阅读 · 1 评论 -
解读YOLO目标检测方法
论文链接:https://arxiv.org/pdf/1506.02640.pdftensorflow源码链接:https://github.com/nilboy/tensorflow-yolo/tree/python2.7/yoloRoss Girshick提出的Faster R-CNN把目标检测的速度提高了一大步,在用Titan X时检测速度可以达到7fps,同时准确度达到73mA原创 2018-01-07 10:37:08 · 2561 阅读 · 1 评论 -
解读SSD目标检测方法
论文链接:https://arxiv.org/pdf/1512.02325.pdftensorflow源码链接:https://github.com/balancap/SSD-TensorflowSSD是YOLO之后又一个引人注目的目标检测结构,它沿用了YOLO中直接回归 bbox和分类概率的方法,同时又参考了Faster R-CNN,大量使用anchor来提升识别准确度。通过把这两种原创 2018-01-07 10:39:07 · 20223 阅读 · 4 评论