基于摄像头实现手写输入字符功能(视频手写)

文章介绍了如何利用PC摄像头结合透光面板和发光笔,实现手写输入字符的功能,以解决部分用户对输入法不熟练的问题。这种创新技术低成本且便捷,同时摄像头还能实现简易键盘功能,提供拼音、笔划、滑笔等多种输入方式,有助于应对‘提笔忘字’现象。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 当前市场上的PC摄像头,尽管生产厂家在外观上费尽心思,以求获得顾客亲睐,但中国的摄像头生产厂商太多,产品外观大同小异,同化现象严重,任何一个厂家已经不能仅凭精美的外观设计手段去提高市场份额了。PC摄像头市场群雄逐鹿,谁有奇招杀出血路,夺得大胜的果实呢,这成了摄像头厂商销售部门头等重要的事情。

PC摄像头是随着即时通讯软件的兴起而大量出现在电脑用户桌面上的。PC摄像头是网吧以及大多数家庭电脑用户必备的一个电脑外设,拥有庞大的用户基础。在此,顺便提及电脑的另一件外设------电脑手写板。电脑手写板出现的时间要比PC摄像头的时间早,但它在电脑用户中出现使用率却很低。究其原因,PC摄像头是用于视频的,是视频交流的唯一设备,手写板是用于电脑文字输入的,但它不是电脑文字输入的唯一方式,电脑文字输入有各种“输入法”,甚至还有“鼠写软件”。简而言之,PC摄像头是视频交流的必须设备,手写板不是电脑文字输入的必须设备,虽然很多的老中年电脑用户利用“输入法”向电脑输入文字感到很吃力,但也仍不愿特意花几十元钱去买手写板。

自从进入了数字通讯时代,人们之间的联系多由电话、互联网取代,很少再动笔纸。尤其是电脑用户,工作、商务活动几乎都是用电脑键盘打字,每年动笔写字的次数少之又少,常常碰到“提笔忘字”的尴尬情形。这种情况已经引起一些人士的注意,倡导平时多用笔写写字。

汉字的书写讲究美感,形成有独特的“书法”艺术。随着时代的发展变化,有专题报道称,中国的“书法”艺术有逐渐消亡的危险。新生代的多数年轻人,对专业的书法训练没有兴趣,对“书法”艺术没有认识。他们大多数时间喜欢泡在网络上,通过键盘打字与人聊天交流。由于鲜少写字,在现实生活中需要用笔写字的场合,字写得丑,错别字连篇也就不奇怪了。

对于不太熟练使用“输入法”输入汉字的人们,常常有“拼不准拼音”或“拆不对字根”而无法顺利输入所需汉字的麻烦。即使因为一个字的卡壳导致一条语句半天完不成,但这些对电脑半生不熟的人们也不会为此去购买专用的手写板。

由于多数电脑用户,特别是网吧,都配有PC摄像头。一直以来,PC摄像头仅仅只用于网络视频交流,从来没有人想过,除此之外,摄像头还能用来干什么。如果在PC摄像头上实现像手写板一样的手写输入功能,普通的电脑用户就有可能偏向于用手写的方式输入文字,毕竟拼音或五笔输入法对他们来说用得不是很熟练。

虽然给摄像头加上手写功能对很多人来说不是必须的,但基于低成本、“有好过没有”的商品销售策略考虑,又显得很有必要。

本人的这项发明专利,就是基于以上所述问题而特别研发的解决方案。

本发明专利,是在摄像头的前方加一块透光面板(玻璃),然后用一只二极管发光笔在面板上书写,软件通过摄像头捕获到连续的光笔轨迹图像,经处理后得到具有时间先后顺序的字符笔画线条,最后把这些笔画线条的轨迹信息提交给可选的“手写字体识别引擎”,识别出所写字符。这其中,透光面板和发光笔的制造成本不会超过一元钱。摄像头的原有外壳要稍作修改,以适合固定透光面板。总的原则是,使得加了透光面板的摄像头外壳既美观,又方便拿在手中。

根据本发明专利所述装置的构成和实现原理,还可以使PC摄像头实现类似手机键盘的简易键盘功能,可用于拼音、笔划、滑笔输入法上。

 下面为利用摄像头实现字符笔划手写功能的演示图解:

当要利用摄像头进行手写输入的时候,把透光面板盖在摄像头前方,启动光笔轨迹处理软件,此时用发光笔在面板上书写文字,其移动的发光轨迹将被摄像头采集到,经一系列处理,输出文字识别结果。

在下面这组图片中,利用摄像头的手写功能,练习汉字“书法”,免除笔、墨的使用,既干净又方便。从图中可以看到,所写的汉字,完美地呈现书写笔划的形状和风格,即所谓“压力感”和笔锋。

 

可以随时在“鼠标手写”和“视频手写”功能之间切换,增加用户更好的使用体验。

 

 

 

 

姓    名:黄冬明

QQ:42741662

邮箱:42741662@qq.com

 

 

### 使用OpenCV和摄像头实现多个手写数字识别 为了实现实时的手写数字识别,可以利用摄像头捕捉视频帧并对其进行处理。具体流程包括图像采集、预处理、特征提取以及分类预测。 #### 图像采集与预处理 实时捕获来自摄像设备的画面,并将其转换成灰度图以便后续操作更为简便高效。接着去除噪声并通过二值化突出显示感兴趣区域内的对象轮廓,这有助于提高模型准确性[^1]。 ```python import cv2 def preprocess_image(frame): gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (5, 5), 0) _, thresh = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) return thresh ``` #### 特征提取与分类准备 当获得清晰的目标物体边缘后,则需进一步定位单个字符位置;通常做法是对整个画面做连通域分析找出所有可能存在的独立封闭图形作为候选区。对于每一个候选区而言,计算其几何矩形边界框来裁剪出对应的小图片片段用于下一步骤中的特征向量构建工作。这里推荐使用直方图方向梯度(HOG)描述符或者其他适合于OCR任务的技术方案来进行表征学习。 ```python def extract_features(image): hog = cv2.HOGDescriptor() h,w=image.shape[:2] resized_img=cv2.resize(image,(int(w*64/h),64)) descriptors=hog.compute(resized_img).flatten() return descriptors ``` #### 加载训练好的模型进行预测 提前准备好经由大量样本数据训练而成的支持向量机(SVM)[^2]或其他合适的机器学习算法实例,在线接收待测项输入的同时调用该预训练过的估计器完成最终类别归属判断过程。 ```python from sklearn.externals import joblib model_path='./models/svm_digit_classifier.pkl' svm=joblib.load(model_path) cap=cv2.VideoCapture(0) while True: ret,frame=cap.read() processed_frame=preprocess_image(frame) contours,_=cv2.findContours(processed_frame,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)[-2:] digits=[] for cnt in contours: x,y,w,h=cv2.boundingRect(cnt) roi=processed_frame[y:y+h,x:x+w] features=extract_features(roi) prediction=int(svm.predict([features])[0]) digits.append((prediction,(x,y,w,h))) cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),2) cv2.putText(frame,str(prediction),(x,y-10),cv2.FONT_HERSHEY_SIMPLEX,0.9,(0,255,0),2) cv2.imshow('Handwritten Digit Recognition', frame) key=cv2.waitKey(1)&0xFF if key==ord('q'): break cap.release() cv2.destroyAllWindows() ``` 此段代码展示了如何结合摄像头拍摄到的即时影像资料同先前已建立完毕的学习机制相配合达成连续不断的多数字辨识效果。值得注意的是实际部署过程中还需考虑诸如光照条件变化等因素的影响从而采取相应措施确保系统稳定可靠运行[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值