1. 数据清洗(data cleaning)清除数据噪声和与挖掘主题明显无关的数据
2. 数据集成(data integration)将来自多个数据源重的相关数据组合到一起
3. 数据选择(data selection)根据数据挖掘的目标选取待处理的数据
4. 数据转换(data transformation)将数据转换为易于进行数据挖掘的数据存储形式
5. 数据挖掘(data mining)利用智能方法挖掘数据模式或者规律的知识
6. 模式评估(pattern evaluation)根据一定的评估标准,从挖掘结果中筛选出有意义的相关知识
7. 知识表示(knowledge representation)利用可视化和知识表达技术,向用户展示所挖掘的相关知识