漫谈TCP BBR的收敛动力学(convergence dynamics)

如果一个算法的某处说明没有数学支撑,那肯定是不能令人放心的,BBR的收敛性模型从来都是模糊的,不如AIMD那样直接,但还是有一些有意思的动力学过程在里面的。

在Neal Cardwell的github里藏着一篇关于BBR收敛动力学的文档 BBR bandwidth-based convergence
https://github.com/google/bbr/commit/c38ae279b67fe1e9b485903daa3f808f7c6e44d4

这篇文档的结论是:

  • 初始化带宽越小的流在up probe之后获得的加速比越大。

该结论对应的截图如下:
在这里插入图片描述

以下是Neal的推导过程:
在这里插入图片描述

看完了这个推导,我在BBR的convergence region坐标里画了一个具体的收敛过程。

我自中学就喜欢各种几何,所以一有实际问题,我总喜欢把它们摆在一个坐标系里比划,我对在坐标系里解决问题的方法情有独钟,这也算是我的一种方法论。

首先我来解释一下convergence region坐标系各个元素的含义:
在这里插入图片描述

总带宽为1的约束下,设A,B两条流初始带宽分别为 a a a 1 − a 1-a 1a,则该状态在convergence region坐标系的坐标为 ( a , 1 − a ) (a,1-a) (a,1a),如果它们分别up probe一次,则它们将获得不同的带宽,于是便可以得到A,B两条流各自的带宽增量表达式。
在这里插入图片描述

注意,坐标系中各个点的坐标通过解析几何的各种方法很容易计算,比如直线求交点。

用变量 x x x替换 a a a,即 x x x为共享带宽为1的A,B两条流中A的带宽,两条流分别up probe之后,其各自带宽增量的函数表达式:

  • probing-increment function for A:

f ( x ) = 0.25 x ( 1 − x ) 0.25 x + 1 f(x)=0.25\dfrac{x(1-x)}{0.25x+1} f(x)=0.250.25x+1x(1x)

  • probing-increment function for B:

g ( x ) = 0.25 x ( x − 1 ) 1.25 − 0.25 x g(x)=0.25\dfrac{x(x-1)}{1.25-0.25x} g(x)=0.251.250.25xx(x1)

用GeoGebra画出二者的图像:
在这里插入图片描述

很清楚地看到二者在 x = 0.5 x=0.5 x=0.5处相交,且关于 x = 0.5 x=0.5 x=0.5对称。当 x > 0.5 x>0.5 x>0.5时,B的带宽小于A,B的up probe加速比大于A,反之, x < 0.5 x<0.5 x<0.5时,B的带宽大于A,B的up probe加速比小于A。

下面是A,B两条流在ProbeBW状态的收敛过程(先不管ProbeRTT状态):
在这里插入图片描述

不断收敛的BltBW坐标在convergence region坐标系中攀爬的典型过程如下:
在这里插入图片描述

这个ProbeBW状态下收敛过程的核心正是那个时间窗口内的max-filter函数,它可以让一条流继续使用已经被抢占的带宽继续up probe,这个正是Neal推导的那个带宽与加速比的负相关性得以运作的核心:

  • max BltBW是即时采集到的,但max BltBW的衰减是缓慢进行的,利用时间差来进行up probe的收敛。

如果没有上述不对称的过程,假设BltBW的感知是即时的,当使用即时的BltBW去进行up probe的时候,事实上是不会收敛的:
在这里插入图片描述

这明显是一个MAMD(Multiplicative Increase and Multiplicative Decrease)过程,inflight按照乘性系数伸缩,收敛点永远在同一条直线上。

所以说,不能离开max-filter函数。这就是 Note that even after flow A probes, flow B’s estimated bandwidth would be a function of B’s max-filtered bandwidth samples, which would still include at least one round-trip of the rate “b”. So when sender B probes, it will be sending at a rate 1.25b. 这句话的直观解释。

max-filtered bandwidth samples意义重大。

虽然BBR在ProbeBW状态可以完成收敛,但为了确保BBR的正常运行,ProbeRTT状态是必不可少的,这个状态保证了RTprop的有效性。只要一个大象流进入了ProbeRTT状态,所有的流均将同时采集到RTprop,于是BBR天然地完成ProbeRTT状态的全局同步,而ProbeRTT之后即将进入ProbeBW之前,这里正是一个良好的收敛点,BBR在这里randomized了所有即将进入ProbeBW状态的流的ProbeBW phase,如此,BBR的收敛机制在这个几乎排空的管道里开始运行,someone probes for bandwidth while the other flow does not…

早些年,我不自量力地魔改BBR。

我随机化进入ProbeRTT的时间,却不知道如此便破坏了同步点后的公平收敛;我增加了两个cruise phase,却不知道这样就丢失了max-filter函数返回的max bw,ProbeBW状态的流再也无法收敛…

我们来看看在正确理论的指导下,如何调整gain系数。如果你不想要1.25了,那么换成多少好呢?如果比1.25大,会带来什么,如果比1.25小,又意味着什么?把增量函数画出来就明了了:
在这里插入图片描述
最高的那一组是gain=1.95的增量函数,中间的是gain=1.25的增量函数,最下面的那一组是gain=1.05的增量函数,这意味着它们大约对应的pacing rate up probe增量为大约65%,20%,1%,你想收敛快一点吗?代价是什么呢?是不是很容易选择了。

此外,max-filter函数也是可调整的,维持10个RTT真的好吗?如果我换成2个,会带来什么?在convergence region坐标系中画个过程吧,一切都将呈现在眼前。

现在,我觉得下面这张图可以被解释了:
在这里插入图片描述


浙江温州皮鞋湿,下雨进水不会胖。

基于bert实现关系三元组抽取python源码+数据集+项目说明.zip基于bert实现关系三元组抽取python源码+数据集+项目说明.zip基于bert实现关系三元组抽取python源码+数据集+项目说明.zip基于bert实现关系三元组抽取python源码+数据集+项目说明.zip基于bert实现关系三元组抽取python源码+数据集+项目说明.zip 个人大四的毕业设计、课程设计、作业、经导师指导并认可通过的高分设计项目,评审平均分达96.5分。主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。 [资源说明] 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的毕设或者课设、作业,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96.5分,放心下载使用! 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),供学习参考。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值