今天说说 tcp 韦斯特伍德,和昨天 dctcp 的路子一样,主要还是一个观点,信息带来性能收益。
reno,cubic 仅做孤立 aimd,没有将 rtt 用到极致,信息相当于浪费掉了,而 westwood 却充分利用 ack 和 rtt 叠加计算了一个 bandwidth,简称 bw,并在过程中冒泡 minrtt,来看看 bw * minrtt 是什么,就是这条流的实际有效的 inflight,既然它有效,为何不随行它呢,所以在丢包恢复后还需要从 (1 - β) 个 cwnd 重新开始吗:
简单建模,然后照例用 matplotlib 对比:
w:cwnd
x:goodput
y:drop-model
z:动态 buffer 占量
R:propagation delay
C:bandwidth
α:静态 buffer 占量
d w d t = { 1 , y ≤ 0 x ⋅ R − w , y > 0 \dfrac{dw}{dt} = \begin{cases} 1, & y \leq 0 \\ x\cdot R-w, & y \gt 0 \end{cases} dtdw={1,x⋅R−w,y≤0y>0
d x d t = C ⋅ w w + ( α + ⋅ z ) − x \dfrac{dx}{dt}=C\cdot \dfrac{w}{w+(\alpha+\cdot z)}-x dtdx=C⋅w+(α+⋅z)w−x
z = u p d a t e z ( z , y 1 , y 0 ) z = update_z(z, y_1,y_0) z=updatez(z,y1,y0)
def update_z(z, y_curr, y_prev):
if int(y_curr) == int(y_prev):
z = y_curr
return z
简单解释一下 update_z 函数,y 标识是否丢包,z 是动态 buffer 占有量,这里的模拟方式很简单,如果 y 是随机丢包,那么 z 不受影响,如果 y 是拥塞丢包,就让 y 正相关于 z,采用的方法是简单 z = y。
OK,简单设 reno,cubic 的 β = 0.5,模拟如下:
可看出锯齿的变化,westwood 并不太受随机丢包的影响,因为它保有实际测量 bw。但在实践中,这种效果依赖测量精度和信息本身的准确度,而我们知道,tcp 的信息精度并不高。
说说 westwood 的实现,由于早期 Linux 内核并不支持高精度时间戳,与 vegas 一样,Linux 内核的 tcp_westwood.c 也是个阉割版:
- bw 计算非常粗糙,应该用 bbr 使用的那套新基础设施来重构;
- 不支持 pacing,这是拜早期 Linux 内核不支持高精度时钟所赐。
浙江温州皮鞋湿,下雨进水不会胖。