速度的本质

我们常常用时速表示运动的快慢,用带宽来表示数据收发的快慢,即 “速度”,但实际上它们都是 “量” 而不是 “量的变化率”,更确切的说应该叫做 “时里程” 和 “吞吐”,即单位时间内行驶的距离和收发的数据量。

当将带宽表达一种速度时,它的意思只是 “单位时间内的平均速度”,但绝非 “瞬时速度”,而后者才是真正意义上的速度。

从一开始我们就对速度存在误解,从小学开始,直到学完了微积分,速度一直被认为只是吞吐(表达一个量,而不是量的变化率),而不是真正的速度。速度的真正定义是导数:

v ( t 0 ) = lim ⁡ Δ t → 0 Δ q Δ t = q ′ ( t 0 ) = lim ⁡ Δ t → 0 q ( t 0 + Δ t ) − q ( t 0 ) Δ t v(t_0)=\lim\limits_{\Delta t\to 0}\frac{\Delta q}{\Delta t}=q^\prime (t_0)=\lim\limits_{\Delta t\to 0}\frac{q(t_0+\Delta t)-q(t_0)}{\Delta t} v(t0)=Δt0limΔtΔq=q(t0)=Δt0limΔtq(t0+Δt)q(t0)

这显然是一个极限表达的导数定义,表达的是一个 “量的变化率”,而不是 “量在单位时间内的变化量”。而被误解的速度定义则是:

V ( t 0 ) = ∫ t 0 − T t 0 v ( t ) d t = q ( t 0 ) − q ( t 0 − T ) V(t_0)=\int_{t_0-T}^{t_0}v(t) dt=q(t_0)-q(t_0-T) V(t0)=t0Tt0v(t)dt=q(t0)q(t0T)

它实际上是真正速度的积分,以上牛顿莱布尼兹公式表达的十分清楚。

为了阐述我们平时理解的速度只是一个量而不是量的变化,看一下我们常规求速度的方法:

V = Δ q t 1 − t 0 V=\dfrac{\Delta q}{t_1-t_0} V=t1t0Δq

Δ q \Delta q Δq 是 t0 到 t0 的变化量。当我们用正常的思路拆解上述公式时,就会发现它不是真正的变化率:

V = Δ q t 1 − t 0 = q ( t 1 ) − q ( t 0 ) t 1 − t 0 = ∫ t 1 t 0 v ( t ) d t t 1 − t 0 V=\dfrac{\Delta q}{t_1-t_0}=\dfrac{q(t_1)-q(t_0)}{t_1-t_0}=\dfrac{\displaystyle\int_{t_1}^{t_0}v(t) dt}{t_1-t_0} V=t1t0Δq=t1t0q(t1)q(t0)=t1t0t1t0v(t)dt

最后一步是牛顿莱布尼兹公式的结果。所以,我们一直说的速度原来只是速度积分的平均值,本质上是一个量。

当看到 100Mbps 这个表述时,我们只知道在 1s 内能发出 100Mb 的数据,其实我们对真正的速度仍然一无所知。

最后来看下单位。

当我们用误解的方式表示速度时,我们可以理解 10km/h,100Mbps 这种表述,毕竟本来就表示 “单位时间内的量”,但如果我们用真正的速度表达式表示速度时,我们就很难读出它们了,这种情况下没有单位时间的概念,分母 Δ t \Delta t Δt 是一个无穷小量,分子 Δ q \Delta q Δq 亦然,只要我们将它们延展到非无穷小,比如极小的 “单位时间”,它就是一个积分,或充其量是积分的均值,无法再体现速度的本质,因为在积分区间这段时间内,我可以随意安排 v(t),只要单位时间内积分不变即可。

浙江温州皮鞋湿,下雨进水不会胖。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值