独悲需要忍受,快乐需要分享
对Linux协议栈多次perf的结果,我无法忍受conntrack的性能,然而它的功能是如此强大,以至于我无法对其割舍,我想自己实现一个快速流表,但是我不得不抛弃依赖于conntrack的诸多功能,比如state match,Linux NAT等,诚然,我虽然对NAT也是抱怨太多,但不管怎样,不是还有很多人在用它吗。
曾经,我针对conntrack查找做过一个基于离线统计的优化,其思路很简单,就使用动态的计算模式代替统一的hash算法。我事先会对经过该BOX的所有五元组进行采样记录,然后离线分析这些数据,比如将五元组拼接成一个32源IP地址+32位目标IP地址+8位协议号+16位源端口+16位目标端口的104位的长串(在我的实现中,我忽略了源端口,因为它是一个易变量,值得被我任性地忽略),然后根据hash桶的大小,比如说是N,以logN位为一个窗口大小在104位的串上滑动,找出相异数量最大的区间,以此区间为模区间,这样就可以将数据流均匀分布在各个hash桶中,如果数据流过多导致冲突链表过长,可以建立多维嵌套hash,把这个hash表倒过来看,它是多么像一棵平衡N叉树啊,N叉Trie树不就是这回事吗?这里的hash函数就是“取某些位”,这又一次展示了Trie与hash的统一。
以上的优化虽然优美,但是却还是复杂了,这个优化思路是我从硬件cache的设计思路中借鉴的。但是和硬件cache比如CPU cache相比,软件的类似方式效果大打折扣,原因在于软件处理hash冲突的时候只能遍历或者查找,而硬件却可以同时进行。请学校里面的不要认为是算法不够优越,这是物理本质决定的。硬件使用的是门电路,流动的是电流,而电流是像水流一样并行连通的,软件使用的逻辑,流动的是步骤,这就是算法,算法就是一系列的逻辑步骤的组合,当然,也有很多复杂的所谓并行算法,但是据我所知,很多效果并不好,复杂带来了更多的复杂,最终经不起继续复杂,只好作罢,另外,这么简单个事儿,搞复杂算法有点大炮打苍蝇了。
如果你用tcpdump抓包,就会发现,结果几乎总是一连串连续被抓取的数据包属于同一个五元组数据流,但是也不绝对,有时会有一个数据包插入到一个流中,一个很合理的抓包结果可能是下面这个样子:
数据流a 正方向
数据流a 正方向
数据流a 反方向
数据流a 正方向
数据流c 正方向
数据流a 反方向
数据流a 发方向
数据流b 反方向
数据流b 正方向
数据流 正方向
....
看出规律了吗?数据包到达BOX遵循非严格意义上的时间局部性,也就是属于一个流的数据包会持续到达。至于空间局部性,很多人都说不明显,但是如果你仔细分析数据流a,b,c,d...的源/目标IP元组,你会发现它们的空间局部性,这是TCAM硬件转发表设计的根本原则。TCAM中“取某些位”中“某些位”说明这些位是空间上最分散的局部,这是一种对空间局部性的逆向运用,比如核心传输网上,你会发现大量的IP都是去往北美或者北欧的。
我本希望在本文中用数学和统计学来阐述这一规律,但是这个行为实在不适合在一篇大众博客中进行,当有人面试我的时候问到我这个问题,我也只能匆匆几句话带过,然后如果需要,我会用电邮的方式来深入解析,但是对于一篇博客,这种方式显得卖弄了,而且会失去很多读者,自然也就没有人为我提意见了。博客中最重要的就是快速给出结果,也就是该怎么做。言归正传。
如果说上述基于“空间局部性逆向利用”的“取某些位hash”的优化是原自“效率来自规则”这个定律的话,那么规则的代价就是复杂化,这个复杂化让我无法继续。还有一个比这个定律更加普适的原则就是“效率来自简单”,我喜欢简单的东西和简单的人,这次,我再次证明了我的正确。在继续之前,我会先简单描述一下nf_conntrack的瓶颈到底在哪。
1.nf_conntrack的正反向tuple使用一个hash表,插入,删除,修改操作需要全局的lock进行保护,这会赞成大量的串行化操作。
2.nf_conntrack的hash表使用了jhash算法,这种算法操作步骤太多,如果conntrack数量少,hash操作将会消耗巨大的性能。
[Tips:如果你了解密码学中的DES/AES等对称加密算法,就会明白,替换,倒置,异或操作可数据完成最佳混淆,使得输出与输出无关,从而达到最佳散列,然而这效果的代价就是操作复杂化了,加解密效率问题多在此,这种操作是如此规则(各种盒)以至于完全可以用硬件电路实现,可是如果没有这种硬件使用CPU的话,这种操作是极其消耗CPU的,jhash也是如此,虽然不很。]
3.nf_conntrack表在多个CPU间是全局的,这会涉及到数据同步的问题,虽然可以通过RCU最大限度缓解,但万一有人写它们呢。
2.cache尽可能小,保存最有可能命中的数据流项,同时保证cache缺失的代价不至于过大。
但是这样就完美了吗?远不!考虑到CPU cache的设计,我发现conntrack cache完全不同,对于CPU,由于虚拟内存机制,cache里面保存的肯定来自同一个进程的地址空间(不考虑更复杂的CPU cache原理...),因此除非发生分支跳转或者函数调用,时间局部性是一定的。但是对于网络数据包,完全是排队论统计决定的,所有的数据包的命名空间就是全世界的IP地址集合,指不定哪一会儿就会有任意流的数据包插入进来。最常见的一种情况就是数据流切换,比如数据流a和数据流b的发送速率,经过的网络带宽实力相当,它们很有可能交替到达,或者间隔两三个数据包交替到达,这种情况下,你要照顾谁呢?这就是第三个原则:效率来自公平。
cache链表太短:流项频繁在conntrack hash表和cache中跳动被替换。
cache链表太长:对待无法命中cache的流项,cache缺失代价太高。
胜者原则:胜者通吃。 凡有的,还要加给他叫他多余。没有的,连他所有的也要夺过来。(《马太福音》)均衡原则1-针对胜者:遍历cache链表的时间不能比标准hash计算+遍历冲突链表的时间更长(平均情况)。
均衡原则2-针对败者:如果遍历了链表没有命中,虽然损失了些不该损失的时间,但是把这种损失维持在一个可以接受的范围内。
只有连续的数据包到达时间间隔小于某个动态计算好的值的时候,才会执行cache替换。
希望看到的人有机会测试一下。效果和疑问可以直接发送到代码注释中所示的邮箱。
对Linux协议栈多次perf的结果,我无法忍受conntrack的性能,然而它的功能是如此强大,以至于我无法对其割舍,我想自己实现一个快速流表,但是我不得不抛弃依赖于conntrack的诸多功能,比如state match,Linux NAT等,诚然,我虽然对NAT也是抱怨太多,但不管怎样,不是还有很多人在用它吗。
曾经,我针对conntrack查找做过一个基于离线统计的优化,其思路很简单,就使用动态的计算模式代替统一的hash算法。我事先会对经过该BOX的所有五元组进行采样记录,然后离线分析这些数据,比如将五元组拼接成一个32源IP地址+32位目标IP地址+8位协议号+16位源端口+16位目标端口的104位的长串(在我的实现中,我忽略了源端口,因为它是一个易变量,值得被我任性地忽略),然后根据hash桶的大小,比如说是N,以logN位为一个窗口大小在104位的串上滑动,找出相异数量最大的区间,以此区间为模区间,这样就可以将数据流均匀分布在各个hash桶中,如果数据流过多导致冲突链表过长,可以建立多维嵌套hash,把这个hash表倒过来看,它是多么像一棵平衡N叉树啊,N叉Trie树不就是这回事吗?这里的hash函数就是“取某些位”,这又一次展示了Trie与hash的统一。
以上的优化虽然优美,但是却还是复杂了,这个优化思路是我从硬件cache的设计思路中借鉴的。但是和硬件cache比如CPU cache相比,软件的类似方式效果大打折扣,原因在于软件处理hash冲突的时候只能遍历或者查找,而硬件却可以同时进行。请学校里面的不要认为是算法不够优越,这是物理本质决定的。硬件使用的是门电路,流动的是电流,而电流是像水流一样并行连通的,软件使用的逻辑,流动的是步骤,这就是算法,算法就是一系列的逻辑步骤的组合,当然,也有很多复杂的所谓并行算法,但是据我所知,很多效果并不好,复杂带来了更多的复杂,最终经不起继续复杂,只好作罢,另外,这么简单个事儿,搞复杂算法有点大炮打苍蝇了。
nf_conntrack的简单优化-增加一个cache
如果什么东西和后续的处理速率不匹配,成为了瓶颈,那么就增加一个cache来平滑这种差异。CPU cache就是利用了这个思路。对于nf_conntrack的效率问题,我们也应该使用相同的思路。但是具体怎么做,还是需要起码的一些哪怕是定性的分析。如果你用tcpdump抓包,就会发现,结果几乎总是一连串连续被抓取的数据包属于同一个五元组数据流,但是也不绝对,有时会有一个数据包插入到一个流中,一个很合理的抓包结果可能是下面这个样子:
数据流a 正方向
数据流a 正方向
数据流a 反方向
数据流a 正方向
数据流c 正方向
数据流a 反方向
数据流a 发方向
数据流b 反方向
数据流b 正方向
数据流 正方向
....
看出规律了吗?数据包到达BOX遵循非严格意义上的时间局部性,也就是属于一个流的数据包会持续到达。至于空间局部性,很多人都说不明显,但是如果你仔细分析数据流a,b,c,d...的源/目标IP元组,你会发现它们的空间局部性,这是TCAM硬件转发表设计的根本原则。TCAM中“取某些位”中“某些位”说明这些位是空间上最分散的局部,这是一种对空间局部性的逆向运用,比如核心传输网上,你会发现大量的IP都是去往北美或者北欧的。
我本希望在本文中用数学和统计学来阐述这一规律,但是这个行为实在不适合在一篇大众博客中进行,当有人面试我的时候问到我这个问题,我也只能匆匆几句话带过,然后如果需要,我会用电邮的方式来深入解析,但是对于一篇博客,这种方式显得卖弄了,而且会失去很多读者,自然也就没有人为我提意见了。博客中最重要的就是快速给出结果,也就是该怎么做。言归正传。
如果说上述基于“空间局部性逆向利用”的“取某些位hash”的优化是原自“效率来自规则”这个定律的话,那么规则的代价就是复杂化,这个复杂化让我无法继续。还有一个比这个定律更加普适的原则就是“效率来自简单”,我喜欢简单的东西和简单的人,这次,我再次证明了我的正确。在继续之前,我会先简单描述一下nf_conntrack的瓶颈到底在哪。
1.nf_conntrack的正反向tuple使用一个hash表,插入,删除,修改操作需要全局的lock进行保护,这会赞成大量的串行化操作。
2.nf_conntrack的hash表使用了jhash算法,这种算法操作步骤太多,如果conntrack数量少,hash操作将会消耗巨大的性能。
[Tips:如果你了解密码学中的DES/AES等对称加密算法,就会明白,替换,倒置,异或操作可数据完成最佳混淆,使得输出与输出无关,从而达到最佳散列,然而这效果的代价就是操作复杂化了,加解密效率问题多在此,这种操作是如此规则(各种盒)以至于完全可以用硬件电路实现,可是如果没有这种硬件使用CPU的话,这种操作是极其消耗CPU的,jhash也是如此,虽然不很。]
3.nf_conntrack表在多个CPU间是全局的,这会涉及到数据同步的问题,虽然可以通过RCU最大限度缓解,但万一有人写它们呢。
鉴于以上,逐步击破,解决方案就有了。
2.cache尽可能小,保存最有可能命中的数据流项,同时保证cache缺失的代价不至于过大。
3.建立一个合理的cache替换自适应原则,保证在位者谋其职,不思进取者自退位的原则
但是这样就完美了吗?远不!考虑到CPU cache的设计,我发现conntrack cache完全不同,对于CPU,由于虚拟内存机制,cache里面保存的肯定来自同一个进程的地址空间(不考虑更复杂的CPU cache原理...),因此除非发生分支跳转或者函数调用,时间局部性是一定的。但是对于网络数据包,完全是排队论统计决定的,所有的数据包的命名空间就是全世界的IP地址集合,指不定哪一会儿就会有任意流的数据包插入进来。最常见的一种情况就是数据流切换,比如数据流a和数据流b的发送速率,经过的网络带宽实力相当,它们很有可能交替到达,或者间隔两三个数据包交替到达,这种情况下,你要照顾谁呢?这就是第三个原则:效率来自公平。
因此,我的最终设计是以下的样子:
cache链表太短:流项频繁在conntrack hash表和cache中跳动被替换。
cache链表太长:对待无法命中cache的流项,cache缺失代价太高。
胜者原则:胜者通吃。 凡有的,还要加给他叫他多余。没有的,连他所有的也要夺过来。(《马太福音》)均衡原则1-针对胜者:遍历cache链表的时间不能比标准hash计算+遍历冲突链表的时间更长(平均情况)。
均衡原则2-针对败者:如果遍历了链表没有命中,虽然损失了些不该损失的时间,但是把这种损失维持在一个可以接受的范围内。
效果:数据流到达速率越快就越容易以极低的代价命中cache,数据流达到速率越慢越不容易命中cache,然而也不用付出高昂的代价。
只有连续的数据包到达时间间隔小于某个动态计算好的值的时候,才会执行cache替换。
我的中间步骤测试代码如下:
//修改net/netfilter/nf_conntrack_core.c
//Email:marywangran@126.com
//1.定义
#define A
#ifdef A
/*
* MAX_CACHE动态计算原则:
* cache链表长度 = 平均冲突链表长度/3, 其中:
* 平均冲突链表长度 = net.nf_conntrack_max/net.netfilter.nf_conntrack_buckets
* 3 = 经验值
*
*/
#define MAX_CACHE 4
struct conntrack_cache {
struct nf_conntrack_tuple_hash *caches[MAX_CACHE];
};
DEFINE_PER_CPU(struct conntrack_cache, conntrack_cache);
#endif
//2.修改resolve_normal_ct
static inline struct nf_conn *
resolve_normal_ct(struct net *net,
struct sk_buff *skb,
unsigned int dataoff,
u_int16_t l3num,
u_int8_t protonum,
struct nf_conntrack_l3proto *l3proto,
struct nf_conntrack_l4proto *l4proto,
int *set_reply,
enum ip_conntrack_info *ctinfo)
{
struct nf_conntrack_tuple tuple;
struct nf_conntrack_tuple_hash *h;
struct nf_conn *ct;
#ifdef A
int i;
struct conntrack_cache *cache;
#endif
if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
dataoff, l3num, protonum, &tuple, l3proto,
l4proto)) {
pr_debug("resolve_normal_ct: Can't get tuple\n");
return NULL;
}
#ifdef A
cache = &__get_cpu_var(conntrack_cache);
rcu_read_lock();
if (0 /* 优化3 */) {
goto slowpath;
}
for (i = 0; i < MAX_CACHE; i++) {
struct nf_conntrack_tuple_hash *ch = cache->caches[i];
struct nf_conntrack_tuple_hash *ch0 = cache->caches[0];
if (ch && nf_ct_tuple_equal(&tuple, &ch->tuple)) {
ct = nf_ct_tuplehash_to_ctrack(ch);
if (unlikely(nf_ct_is_dying(ct) ||
!atomic_inc_not_zero(&ct->ct_general.use))) {
h = NULL;
goto slowpath;
}
else {
if (unlikely(!nf_ct_tuple_equal(&tuple, &ch->tuple))) {
nf_ct_put(ct);
h = NULL;
goto slowpath;
}
}
/*************************************** 优化1简介 *****************************************/
/* 并非直接提升到第一个,而是根据两次cache命中的间隔酌情提升,提升的步数与时间间隔成反比 */
/* 这就避免了cache队列本身的剧烈抖动。事实上,命中的时间间隔如果能加权历史间隔值,效果更好 */
/*******************************************************************************************/
/*
* 基于时间局部性提升命中项的优先级
*/
if (i > 0 /* && 优化1 */) {
cache->caches[0] = ch;
cache->caches[i] = ch0;
}
h = ch;
}
}
ct = NULL;
slowpath:
rcu_read_unlock();
if (!h)
#endif
/* look for tuple match */
h = nf_conntrack_find_get(net, &tuple);
if (!h) {
h = init_conntrack(net, &tuple, l3proto, l4proto, skb, dataoff);
if (!h)
return NULL;
if (IS_ERR(h))
return (void *)h;
}
#ifdef A
else {
int j;
struct nf_conn *ctp;
struct nf_conntrack_tuple_hash *chp;
/*********************** 优化2简介 **************************/
/* 只有连续两个数据包到达的时间间隔小于n时才会执行cache替换 */
/* 这是为了避免诸如ICMP之类的慢速流导致的cache抖动 */
/************************************************************/
if (0 /* 优化2 */) {
goto skip;
}
/************************** 优化3简介 *****************************/
/* 只有在总的conntrack数量大于hash bucket数量的4倍时才启用cache */
/* 因为conntrack数量小的话,经过一次hash运算就可以一次定位, */
/* 或者经过遍历很短的冲突链表即可定位,使用cache反而降低了性能 */
/******************************************************************/
if (0 /* 优化3 */) {
goto skip;
}
ct = nf_ct_tuplehash_to_ctrack(h);
nf_conntrack_get(&ct->ct_general);
chp = cache->caches[MAX_CACHE-1];
for (j = MAX_CACHE-1; j > 0; j--) {
cache->caches[j] = cache->caches[j-1];
}
cache->caches[0] = h;
if (chp) {
ctp = nf_ct_tuplehash_to_ctrack(chp);
nf_conntrack_put(&ctp->ct_general);
}
}
skip:
if (!ct) {
ct = nf_ct_tuplehash_to_ctrack(h);
}
#else
ct = nf_ct_tuplehash_to_ctrack(h);
#endif
/* It exists; we have (non-exclusive) reference. */
if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
*ctinfo = IP_CT_ESTABLISHED + IP_CT_IS_REPLY;
/* Please set reply bit if this packet OK */
*set_reply = 1;
} else {
/* Once we've had two way comms, always ESTABLISHED. */
if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
pr_debug("nf_conntrack_in: normal packet for %p\n", ct);
*ctinfo = IP_CT_ESTABLISHED;
} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
pr_debug("nf_conntrack_in: related packet for %p\n",
ct);
*ctinfo = IP_CT_RELATED;
} else {
pr_debug("nf_conntrack_in: new packet for %p\n", ct);
*ctinfo = IP_CT_NEW;
}
*set_reply = 0;
}
skb->nfct = &ct->ct_general;
skb->nfctinfo = *ctinfo;
return ct;
}
//2.修改nf_conntrack_init
int nf_conntrack_init(struct net *net)
{
int ret;
#ifdef A
int i;
#endif
if (net_eq(net, &init_net)) {
ret = nf_conntrack_init_init_net();
if (ret < 0)
goto out_init_net;
}
ret = nf_conntrack_init_net(net);
if (ret < 0)
goto out_net;
if (net_eq(net, &init_net)) {
/* For use by REJECT target */
rcu_assign_pointer(ip_ct_attach, nf_conntrack_attach);
rcu_assign_pointer(nf_ct_destroy, destroy_conntrack);
/* Howto get NAT offsets */
rcu_assign_pointer(nf_ct_nat_offset, NULL);
}
#ifdef A
/* 初始化每CPU的conntrack cache队列 */
for_each_possible_cpu(i) {
int j;
struct conntrack_cache *cache;
cache = &per_cpu(conntrack_cache, i);
for (j = 0; j < MAX_CACHE; j++) {
cache->caches[j] = NULL;
}
}
#endif
return 0;
out_net:
if (net_eq(net, &init_net))
nf_conntrack_cleanup_init_net();
out_init_net:
return ret;
}
希望看到的人有机会测试一下。效果和疑问可以直接发送到代码注释中所示的邮箱。