oj-【基础图论】最优布线问题

该博客讨论了一种图论问题,即如何在学校计算机网络中节省数据线连接费用。目标是确保所有计算机通过直接或间接的方式相互连通,而最小化总成本。作者提到,这个问题可以通过使用最小生成树算法来解决,特别是Prim算法。博客中提供了输入输出格式的说明,并简要介绍了Kruskal和Prim算法的工作原理,最后分享了实现代码并成功获得正确答案。
摘要由CSDN通过智能技术生成

题目描述

学校有n台计算机,为了方便数据传输,现要将它们用数据线连接起来。两台计算机被连接是指它们中间有数据线连接。由于计算机所处的位置不同,因此不同的两台计算机的连接费用往往是不同的。 当然,如果将任意两台计算机都用数据线连接,费用将是相当庞大的。

为了节省费用,我们采用数据的间接传输手段,即一台计算机可以间接的通过若干台计算机(作为中转)来实现与另一台计算机的连接。 现在由你负责连接这些计算机,你的任务是使任意两台计算机都连通(不管是直接的或间接的)。

输入

第1行:1个整数n(2≤n≤100),表示计算机的数目。

此后的n行,每行n个整数。第x+1行y列的整数表示直接连接第x台计算机和第y台计算机的费用。

输出

第1行:1个整数,表示最小的连接费用

样例输入

3
0 1 2
1 0 1
2 1 0

样例输出

2

提示

这种题..一看就知道是用最小生成树~~

求最小生成树有两种算法~kruskal和prim.

在这道题中,如果我没搞错...应该是用的prim.

kruskal:把边从小到大排,然后一条一条选可以使两端的点不在一棵树中的边..然后合并..

prim:从一个点开始,找到与在树中的点相连的权值最小的点(?)

然后上代码..

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值