最大公约数&最小公倍数

求两自然数,其和是667,最小公倍数与最大公约数之比是120:1(例如(115,552) 、(232,435))
#include <stdio.h>
int fn_gcd(int iNumFor,int iNumNext);
int main()
{
 int iNum1,iNum2;
    for(iNum1=2;iNum1<334;iNum1++)//iNum1<iNum2
 {
  iNum2=667-iNum1;
  int igcdNum=fn_gcd(iNum1,iNum2);
  int ilcmNum=iNum1*iNum2/igcdNum;
  if (igcdNum*120==ilcmNum)
  {
   printf("%d  %d/n",iNum1,iNum2);
  }
 }
 return 0;
}
int fn_gcd(int iNumFor,int iNumNext)
{
 //gcd(a,b)=gcd(b,a mod b)
 int iTemp;
 while (1)
 {
   iTemp=iNumNext;
   if (iNumFor % iNumNext==0)
   {
    return iNumNext;
   }
   iNumNext=iNumFor % iNumNext;
   iNumFor=iTemp;
 }
}
/
num1*num2=gcd(num1,num2)*lcm(num1,num2)
让我奇怪很多例程都同时求了最大公约数和最小公倍数,求一个不就成了么!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值