三角函数公式总结

本文详细介绍了三角函数的求导法则,包括正弦、余弦、正切等函数的导数表达式。同时,文章还涵盖了三角函数的重要公式,如和差角公式、和差化积公式、积化和差公式、二倍角公式、半角公式及万能公式,为读者提供了全面的数学知识。
摘要由CSDN通过智能技术生成

求导运算

( sin ⁡ x ) ′ = cos ⁡ x (\sin x)'=\cos x (sinx)=cosx ( cos ⁡ x ) ′ = sin ⁡ x (\cos x)'=\sin x (cosx)=sinx ( tan ⁡ x ) ′ = 1 cos ⁡ 2 x = sec ⁡ 2 x (\tan x)'=\frac{1}{\cos^2 x }=\sec^2 x (tanx)=cos2x1=sec2x ( cot ⁡ x ) ′ = − csc ⁡ 2 x = − 1 sin ⁡ 2 x (\cot x)'=-\csc ^2 x=-\frac{1}{\sin ^2 x} (cotx)=csc2x=sin2x1 ( sec ⁡ x ) ′ = sin ⁡ x cos ⁡ 2 x = sec ⁡ x tan ⁡ x (\sec x)'=\frac{\sin x}{\cos^ 2 x}=\sec x\tan x (secx)=cos2xsinx=secxtanx ( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)'=\frac{1}{\sqrt{1-x^2}} (arcsinx)=1x2 1 ( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arccos x )'=-\frac{1}{\sqrt{1-x^2}} (arccosx)=1x2 1 ( arctan ⁡ x ) ′ = 1 1 + x 2 (\arctan x)'=\frac{1}{1+x^2} (arctanx)=1+x21 ( a r c c o t   x ) ′ = − 1 1 + x 2 (\mathrm{arccot}\,x)'=-\frac{1}{1+x^2} (arccotx)=1+x21 ( a r c s e c   x ) ′ = 1 ∣ x ∣ x 2 − 1 (\mathrm{arcsec}\, x)'=\frac{1}{|x|\sqrt{x^2-1}} (arcsecx)=xx21 1 ( a r c c s c   x ) ′ = − 1 ∣ x ∣ x 2 − 1 (\mathrm{arccsc}\, x)'=-\frac{1}{|x|\sqrt{x^2-1}} (arccscx)=xx21 1

和差角公式

sin ⁡ ( α ± β ) = sin ⁡ α cos ⁡ β ± cos ⁡ α sin ⁡ β \sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta sin(α±β)=sinαcosβ±cosαsinβ cos ⁡ ( α ± β ) = cos ⁡ α cos ⁡ β ∓ sin ⁡ α sin ⁡ β \cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta cos(α±β)=cosαcosβsinαsinβ tan ⁡ ( α ± β ) = tan ⁡ α ± tan ⁡ β 1 ∓ tan ⁡ α tan ⁡ β \tan(\alpha\pm\beta)=\frac{\tan\alpha\pm\tan\beta}{1\mp\tan\alpha\tan\beta} tan(α±β)=1tanαtanβtanα±tanβ cot ⁡ ( α ± β ) = cot ⁡ α cot ⁡ β ∓ 1 cot ⁡ β ± cot ⁡ α \cot(\alpha\pm\beta)=\frac{\cot\alpha\cot\beta\mp1}{\cot\beta\pm\cot\alpha} cot(α±β)=cotβ±cotαcotαcotβ1

和差化积

sin ⁡ α ± sin ⁡ β = 2 sin ⁡ α ± β 2 cos ⁡ α ∓ β 2 \sin\alpha\pm\sin\beta=2\sin\frac{\alpha\pm\beta}{2}\cos\frac{\alpha\mp\beta}{2} sinα±sinβ=2sin2α±βcos2αβ cot ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 \cot\alpha+\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} cotα+cosβ=2cos2α+βcos2αβ cot ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \cot\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} cotαcosβ=2sin2α+βsin2αβ tan ⁡ α + tan ⁡ β = sin ⁡ ( α + β ) cos ⁡ α cos ⁡ β \tan \alpha+\tan\beta=\frac{\sin(\alpha+\beta)}{\cos\alpha\cos\beta} tanα+tanβ=cosαcosβsin(α+β)

积化和差

cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] \cos\alpha\sin\beta=\frac{1}{2}[\sin(\alpha+\beta)-\sin(\alpha-\beta)] cosαsinβ=21[sin(α+β)sin(αβ)] sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] \sin\alpha\cos\beta=\frac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)] sinαcosβ=21[sin(α+β)+sin(αβ)] cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] \cos\alpha\cos\beta=\frac{1}{2}[\cos(\alpha+\beta)+\cos(\alpha-\beta)] cosαcosβ=21[cos(α+β)+cos(αβ)] sin ⁡ α sin ⁡ β = 1 2 [ cos ⁡ ( α − β ) − c o s ( α + β ) ] \sin\alpha\sin\beta=\frac{1}{2}[\cos(\alpha-\beta)-cos(\alpha+\beta)] sinαsinβ=21[cos(αβ)cos(α+β)]

二倍角公式

sin ⁡ 2 α = 2 sin ⁡ α cos ⁡ α = 2 tan ⁡ α 1 + tan ⁡ 2 α \sin2\alpha=2\sin\alpha\cos\alpha=\frac{2\tan\alpha}{1+\tan^2\alpha} sin2α=2sinαcosα=1+tan2α2tanα cos ⁡ 2 α = 2 cos ⁡ 2 α − 1 = 1 − 2 sin ⁡ 2 α = 1 − tan ⁡ 2 α 1 + tan ⁡ 2 α \cos2\alpha=2\cos^2\alpha-1=1-2\sin^2\alpha=\frac{1-\tan^2\alpha}{1+\tan^2\alpha} cos2α=2cos2α1=12sin2α=1+tan2α1tan2α tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α \tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha} tan2α=1tan2α2tanα

半角公式

sin ⁡ α 2 = ± 1 − cos ⁡ α 2 \sin\frac{\alpha}{2}=\pm\sqrt{\frac{1-\cos\alpha}{2}} sin2α=±21cosα cos ⁡ α 2 = ± 1 + cos ⁡ α 2 \cos\frac{\alpha}{2}=\pm\sqrt{\frac{1+\cos\alpha}{2}} cos2α=±21+cosα tan ⁡ α 2 = sin ⁡ α 1 + cos ⁡ α = 1 − cos ⁡ α sin ⁡ α = ± 1 − cos ⁡ α 1 + cos ⁡ α \tan\frac{\alpha}{2}=\frac{\sin\alpha}{1+\cos\alpha}=\frac{1-\cos\alpha}{\sin\alpha}=\pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} tan2α=1+cosαsinα=sinα1cosα=±1+cosα1cosα cot ⁡ α 2 = 1 + cos ⁡ α sin ⁡ α = sin ⁡ α 1 − cos ⁡ α = ± 1 + cos ⁡ α 1 − cos ⁡ α \cot\frac{\alpha}{2}=\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}=\pm\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}} cot2α=sinα1+cosα=1cosαsinα=±1cosα1+cosα

万能公式

sin ⁡ α = 2 t a n α 2 1 + tan ⁡ 2 α 2 \sin\alpha=\frac{2tan\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}} sinα=1+tan22α2tan2α cos ⁡ α = 1 − tan ⁡ 2 α 2 1 + tan ⁡ 2 α 2 \cos\alpha=\frac{1-\tan^2\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}} cosα=1+tan22α1tan22α tan ⁡ α = 2 tan ⁡ α 2 1 − tan ⁡ 2 α 2 \tan \alpha=\frac{2\tan\frac{\alpha}{2}}{1-\tan^2\frac{\alpha}{2}} tanα=1tan22α2tan2α

辅助角公式

a sin ⁡ α + b cos ⁡ α = a 2 + b 2 sin ⁡ ( α + φ ) ,   tan ⁡ φ = b a a\sin\alpha+b\cos\alpha=\sqrt{a^2+b^2}\sin(\alpha+\varphi),\,\tan\varphi=\frac{b}{a} asinα+bcosα=a2+b2 sin(α+φ),tanφ=ab

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值