求导运算
( sin x ) ′ = cos x (\sin x)'=\cos x (sinx)′=cosx ( cos x ) ′ = sin x (\cos x)'=\sin x (cosx)′=sinx ( tan x ) ′ = 1 cos 2 x = sec 2 x (\tan x)'=\frac{1}{\cos^2 x }=\sec^2 x (tanx)′=cos2x1=sec2x ( cot x ) ′ = − csc 2 x = − 1 sin 2 x (\cot x)'=-\csc ^2 x=-\frac{1}{\sin ^2 x} (cotx)′=−csc2x=−sin2x1 ( sec x ) ′ = sin x cos 2 x = sec x tan x (\sec x)'=\frac{\sin x}{\cos^ 2 x}=\sec x\tan x (secx)′=cos2xsinx=secxtanx ( arcsin x ) ′ = 1 1 − x 2 (\arcsin x)'=\frac{1}{\sqrt{1-x^2}} (arcsinx)′=1−x21 ( arccos x ) ′ = − 1 1 − x 2 (\arccos x )'=-\frac{1}{\sqrt{1-x^2}} (arccosx)′=−1−x21 ( arctan x ) ′ = 1 1 + x 2 (\arctan x)'=\frac{1}{1+x^2} (arctanx)′=1+x21 ( a r c c o t   x ) ′ = − 1 1 + x 2 (\mathrm{arccot}\,x)'=-\frac{1}{1+x^2} (arccotx)′=−1+x21 ( a r c s e c   x ) ′ = 1 ∣ x ∣ x 2 − 1 (\mathrm{arcsec}\, x)'=\frac{1}{|x|\sqrt{x^2-1}} (arcsecx)′=∣x∣x2−11 ( a r c c s c   x ) ′ = − 1 ∣ x ∣ x 2 − 1 (\mathrm{arccsc}\, x)'=-\frac{1}{|x|\sqrt{x^2-1}} (arccscx)′=−∣x∣x2−11
和差角公式
sin ( α ± β ) = sin α cos β ± cos α sin β \sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta sin(α±β)=sinαcosβ±cosαsinβ cos ( α ± β ) = cos α cos β ∓ sin α sin β \cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta cos(α±β)=cosαcosβ∓sinαsinβ tan ( α ± β ) = tan α ± tan β 1 ∓ tan α tan β \tan(\alpha\pm\beta)=\frac{\tan\alpha\pm\tan\beta}{1\mp\tan\alpha\tan\beta} tan(α±β)=1∓tanαtanβtanα±tanβ cot ( α ± β ) = cot α cot β ∓ 1 cot β ± cot α \cot(\alpha\pm\beta)=\frac{\cot\alpha\cot\beta\mp1}{\cot\beta\pm\cot\alpha} cot(α±β)=cotβ±cotαcotαcotβ∓1
和差化积
sin α ± sin β = 2 sin α ± β 2 cos α ∓ β 2 \sin\alpha\pm\sin\beta=2\sin\frac{\alpha\pm\beta}{2}\cos\frac{\alpha\mp\beta}{2} sinα±sinβ=2sin2α±βcos2α∓β cot α + cos β = 2 cos α + β 2 cos α − β 2 \cot\alpha+\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} cotα+cosβ=2cos2α+βcos2α−β cot α − cos β = − 2 sin α + β 2 sin α − β 2 \cot\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} cotα−cosβ=−2sin2α+βsin2α−β tan α + tan β = sin ( α + β ) cos α cos β \tan \alpha+\tan\beta=\frac{\sin(\alpha+\beta)}{\cos\alpha\cos\beta} tanα+tanβ=cosαcosβsin(α+β)
积化和差
cos α sin β = 1 2 [ sin ( α + β ) − sin ( α − β ) ] \cos\alpha\sin\beta=\frac{1}{2}[\sin(\alpha+\beta)-\sin(\alpha-\beta)] cosαsinβ=21[sin(α+β)−sin(α−β)] sin α cos β = 1 2 [ sin ( α + β ) + sin ( α − β ) ] \sin\alpha\cos\beta=\frac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)] sinαcosβ=21[sin(α+β)+sin(α−β)] cos α cos β = 1 2 [ cos ( α + β ) + cos ( α − β ) ] \cos\alpha\cos\beta=\frac{1}{2}[\cos(\alpha+\beta)+\cos(\alpha-\beta)] cosαcosβ=21[cos(α+β)+cos(α−β)] sin α sin β = 1 2 [ cos ( α − β ) − c o s ( α + β ) ] \sin\alpha\sin\beta=\frac{1}{2}[\cos(\alpha-\beta)-cos(\alpha+\beta)] sinαsinβ=21[cos(α−β)−cos(α+β)]
二倍角公式
sin 2 α = 2 sin α cos α = 2 tan α 1 + tan 2 α \sin2\alpha=2\sin\alpha\cos\alpha=\frac{2\tan\alpha}{1+\tan^2\alpha} sin2α=2sinαcosα=1+tan2α2tanα cos 2 α = 2 cos 2 α − 1 = 1 − 2 sin 2 α = 1 − tan 2 α 1 + tan 2 α \cos2\alpha=2\cos^2\alpha-1=1-2\sin^2\alpha=\frac{1-\tan^2\alpha}{1+\tan^2\alpha} cos2α=2cos2α−1=1−2sin2α=1+tan2α1−tan2α tan 2 α = 2 tan α 1 − tan 2 α \tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha} tan2α=1−tan2α2tanα
半角公式
sin α 2 = ± 1 − cos α 2 \sin\frac{\alpha}{2}=\pm\sqrt{\frac{1-\cos\alpha}{2}} sin2α=±21−cosα cos α 2 = ± 1 + cos α 2 \cos\frac{\alpha}{2}=\pm\sqrt{\frac{1+\cos\alpha}{2}} cos2α=±21+cosα tan α 2 = sin α 1 + cos α = 1 − cos α sin α = ± 1 − cos α 1 + cos α \tan\frac{\alpha}{2}=\frac{\sin\alpha}{1+\cos\alpha}=\frac{1-\cos\alpha}{\sin\alpha}=\pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} tan2α=1+cosαsinα=sinα1−cosα=±1+cosα1−cosα cot α 2 = 1 + cos α sin α = sin α 1 − cos α = ± 1 + cos α 1 − cos α \cot\frac{\alpha}{2}=\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}=\pm\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}} cot2α=sinα1+cosα=1−cosαsinα=±1−cosα1+cosα
万能公式
sin α = 2 t a n α 2 1 + tan 2 α 2 \sin\alpha=\frac{2tan\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}} sinα=1+tan22α2tan2α cos α = 1 − tan 2 α 2 1 + tan 2 α 2 \cos\alpha=\frac{1-\tan^2\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}} cosα=1+tan22α1−tan22α tan α = 2 tan α 2 1 − tan 2 α 2 \tan \alpha=\frac{2\tan\frac{\alpha}{2}}{1-\tan^2\frac{\alpha}{2}} tanα=1−tan22α2tan2α
辅助角公式
a sin α + b cos α = a 2 + b 2 sin ( α + φ ) ,   tan φ = b a a\sin\alpha+b\cos\alpha=\sqrt{a^2+b^2}\sin(\alpha+\varphi),\,\tan\varphi=\frac{b}{a} asinα+bcosα=a2+b2sin(α+φ),tanφ=ab