1. 基本定义
正弦函数(sin):
$$
sin(θ)=\dfrac{对边}{斜边}
$$
余弦函数(cos):
$$
cos(θ)=\dfrac{邻边}{斜边}
$$
正切函数(tan):
$$
tan(θ)=\dfrac{对边}{邻边}=\dfrac{sin(θ)}{cos(θ)}
$$
2. 基本关系
2.1 毕达哥拉斯恒等式
$$
sin^2(θ)+cos^2(θ)=1
$$
这个恒等式可以从直角三角形的勾股定理推导出来。
2.2 商数关系
$$
tan(θ)=\dfrac{sin(θ)}{cos(θ)}\\
cot(θ)=\dfrac{cos(θ)}{sin(θ)}=\dfrac{1}{tan(θ)}
$$
2.3 倒数关系
$$
sec(θ)=\dfrac{1}{cos(θ)}\\
csc(θ)=\dfrac{1}{sin(θ)}
$$
3. 三角函数的周期性
正弦函数和余弦函数:
$$
sin(θ+2kπ)=sin(θ)
$$
$$
cos(θ+2kπ)=cos(θ)
$$
其中,k 是任意整数。
正切函数:
$$
tan(θ+kπ)=tan(θ)
$$
其中,k 是任意整数。
4. 三角函数的对称性
正弦函数:
$$
sin(−θ)=−sin(θ)
$$
余弦函数:
$$
cos(−θ)=cos(θ)
$$
正切函数:
$$
tan(−θ)=−tan(θ)
$$
5. 三角函数的和差公式
正弦函数的和差公式:
$$
sin(A±B)=sin(A)cos(B)±cos(A)sin(B)
$$
余弦函数的和差公式:
$$
cos(A±B)=cos(A)cos(B)∓sin(A)sin(B)
$$
正切函数的和差公式:
$$
tan(A±B)=\dfrac{tan(A)±tan(B)}{1∓tan(A)tan(B)}
$$
6. 三角函数的倍角公式
正弦函数的倍角公式:
$$
sin(2θ)=2sin(θ)cos(θ)
$$
余弦函数的倍角公式:
$$
cos(2θ)=cos^2(θ)−sin^2(θ)=2cos^2(θ)−1=1−2sin^2(θ)
$$
正切函数的倍角公式:
$$
tan(2θ)=\dfrac{2tan(θ)}{1−tan^2(θ)}
$$
7. 三角函数的半角公式
正弦函数的半角公式:
$$
sin(\dfrac{θ}{2})=±\sqrt{\dfrac{1−cos(θ)}{2}}
$$
余弦函数的半角公式:
$$
cos(\dfrac{θ}{2})=±\sqrt{\dfrac{1+cos(θ)}{2}}
$$
正切函数的半角公式:
$$
tan(\dfrac{θ}{2})=±\sqrt{\dfrac{1−cos(θ)}{1+cos(θ)}}
$$