三角函数总结

1. 基本定义

正弦函数(sin):
  $$
  sin⁡(θ)=\dfrac{对边}{斜边}
  $$

余弦函数(cos):
  $$
  cos⁡(θ)=\dfrac{邻边}{斜边}
  $$

正切函数(tan):
  $$
  tan⁡(θ)=\dfrac{对边}{邻边}=\dfrac{sin⁡(θ)}{cos⁡(θ)}
  $$

 2. 基本关系

2.1 毕达哥拉斯恒等式

$$
sin⁡^2(θ)+cos⁡^2(θ)=1
$$

这个恒等式可以从直角三角形的勾股定理推导出来。

 2.2 商数关系

$$
tan⁡(θ)=\dfrac{sin⁡(θ)}{cos⁡(θ)}\\
cot⁡(θ)=\dfrac{cos⁡(θ)}{sin⁡(θ)}=\dfrac{1}{tan⁡(θ)}
$$

 2.3 倒数关系

$$
sec⁡(θ)=\dfrac{1}{cos⁡(θ)}\\
csc⁡(θ)=\dfrac{1}{sin⁡(θ)}
$$

 3. 三角函数的周期性

正弦函数和余弦函数:
  $$
  sin⁡(θ+2kπ)=sin⁡(θ)
  $$

  $$
  cos⁡(θ+2kπ)=cos⁡(θ)
  $$

  其中,k 是任意整数。

正切函数:
  $$
  tan⁡(θ+kπ)=tan⁡(θ)
  $$
  其中,k 是任意整数。

 4. 三角函数的对称性

正弦函数:
  $$
  sin⁡(−θ)=−sin⁡(θ)
  $$

余弦函数:
  $$
  cos⁡(−θ)=cos⁡(θ)
  $$

正切函数:
  $$
  tan⁡(−θ)=−tan⁡(θ)
  $$

 5. 三角函数的和差公式

正弦函数的和差公式:
  $$
  sin⁡(A±B)=sin⁡(A)cos⁡(B)±cos⁡(A)sin⁡(B)
  $$

余弦函数的和差公式:
  $$
  cos⁡(A±B)=cos⁡(A)cos⁡(B)∓sin⁡(A)sin⁡(B)
  $$

正切函数的和差公式:
  $$
  tan⁡(A±B)=\dfrac{tan⁡(A)±tan⁡(B)}{1∓tan⁡(A)tan⁡(B)}
  $$

 6. 三角函数的倍角公式

正弦函数的倍角公式:
  $$
  sin⁡(2θ)=2sin⁡(θ)cos⁡(θ)
  $$

余弦函数的倍角公式:
  $$
  cos⁡(2θ)=cos⁡^2(θ)−sin⁡^2(θ)=2cos⁡^2(θ)−1=1−2sin⁡^2(θ)
  $$

正切函数的倍角公式:
  $$
  tan⁡(2θ)=\dfrac{2tan⁡(θ)}{1−tan⁡^2(θ)}
  $$

7. 三角函数的半角公式

正弦函数的半角公式:
  $$
  sin⁡(\dfrac{θ}{2})=±\sqrt{\dfrac{1−cos⁡(θ)}{2}}
  $$

余弦函数的半角公式:
  $$
  cos⁡(\dfrac{θ}{2})=±\sqrt{\dfrac{1+cos⁡(θ)}{2}}
  $$

正切函数的半角公式:
  $$
  tan⁡(\dfrac{θ}{2})=±\sqrt{\dfrac{1−cos⁡(θ)}{1+cos⁡(θ)}}
  $$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值