- 博客(45)
- 收藏
- 关注
原创 代码复现:LEARNING FAST AND SLOW FORONLINE TIME SERIES FORECASTING
这里发现给的配置文件不是很全面,基于全部的深度学习环境安装过后,我的实验环境是RTX 5060ti 16g。基于论文中的计算KL散度会爆显存,该放到学校的算力资源上a800 80g显存的情况下依然会爆显存。如果你的显卡是50系列,cuda版本必须上12.8,python版本必须3.10以上才能行。往往轻量级别的时间序列数据集,显存16G就吃得消了,且精度达不到文章中的最好效果。这里的sh脚本执行直接在linux上起一个名字如 vim run_all.sh。数据文件放置位置应如图。
2025-12-18 20:01:33
614
原创 文献阅读:未知干预下的长、短期状态解缠在线时间序列预测
进一步深化了FSNet的思想。它明确提出将隐状态(Latent State)解耦。机制:在更新时,强制模型保持对“长期稳定状态”的记忆,只对“短期状态”进行激进的更新。这有效解决了在线预测中的过拟合近期数据的问题。
2025-12-14 14:02:27
668
原创 文献阅读:LEARNING FAST AND SLOW FORONLINE TIME SERIES FORECASTING
本文提出FS-Net框架,受神经科学互补学习系统理论启发,解决在线时间序列预测中的两大挑战:快速适应概念漂移和记忆重复模式。该模型在TCN主干网络基础上,通过每层适配器(模拟海马体快速学习)和联想记忆(模拟新皮层长期记忆)实现动态适应。关键技术包括:梯度EMA检测概念漂移、Chunking高效映射、记忆触发机制等。实验表明FS-Net在多个数据集上表现最优,能快速适应突发和渐进漂移。代码实现展示了核心组件的模块化设计,包括梯度EMA、适配器、联想记忆等关键机制,支持严格在线学习场景下的高效参数更新。
2025-12-08 19:08:49
656
原创 文献阅读·MCformer:基于混合通道变换的多变量时间序列预测
《MCformer混合通道策略在多变量时序预测中的创新应用》摘要:针对物联网多变量时序预测中"长序列建模"与"通道关联建模"的难题,该研究提出创新混合通道策略MCformer。通过融合通道独立(CI)的数据扩展优势与有限通道混合(m)的关联捕捉能力,在保持泛化性能的同时解决传统CI策略的"通道关联遗忘"问题。模型采用可逆归一化、补丁投影和优化Transformer架构,在5个真实数据集上超越8个SOTA模型,尤其在862通道交通数据上MSE指标提升
2025-09-13 17:50:40
1065
原创 文献阅读·STDNet: A Spatio-Temporal Decomposition Neural Network for Multivariate Time Series Forecasting
摘要:STDNet提出了一种创新的"时空分解+双重残差堆叠"架构,用于解决长期多元时间序列预测中的非线性、非平稳性难题。该模型通过时空分解将复杂时序拆解为时间项和空间项,分别采用自相关机制和CNN-注意力融合进行处理,并通过双重残差堆叠逐步优化预测误差。实验表明,在气象、能源等领域的四个数据集上,STDNet在预测精度(平均提升8-30%)和长期稳定性(720步预测误差仅增加18.3%)上显著优于现有方法,同时计算效率较Transformer类模型提升50%以上。该研究为复杂时序预测提供了有效的模块化解决
2025-09-13 17:37:43
945
原创 文献阅读·Sageformer:长期多变量时间序列预测的序列感知框架
系列感知框架定位为Transformer 的通用扩展模块全局令牌生成:在输入序列前添加可学习全局令牌,捕捉每个序列的全局信息及序列间交互;迭代消息传递:交替进行 “图聚合(建模序列间依赖)” 与 “时间编码(建模序列内依赖)”,逐步优化嵌入表示,最终通过线性预测头输出结果。SageFormer 是该框架的实例化实现,核心逻辑为 “GNN 建模序列间依赖 + Transformer 建模序列内依赖”,通过权重共享与联合优化,在不显著增加复杂度的前提下,实现两类依赖的协同学习。协同建模两类依赖。
2025-09-10 15:11:26
634
原创 力扣刷题 题11,12
思路:设置左右指针 left和 right 指针指向数组的开始和末尾,max_water 用于记录最大容量初始为0。利用while循环left<right,移动指针比较数组元素 height[left] 和 height[right] 的大小,移动较短的那条线的指针,当 left 和 right 指针相遇时,循环结束,返回 max_water。代码。
2025-02-08 22:27:12
359
原创 力扣刷题 题7 题8 题9
思路:使用 digit=x % 10 获取最后一位数字。使用 x /= 10 去掉最后一位数字。将结果 更新为 result * 10 + digit。
2025-02-07 16:18:21
298
原创 力扣刷题 题6 Z字形变换
模拟 Z 字形排列:创建一个大小为 numRows 的字符串数组,用于存储每一行的字符。使用一个指针 currentRow 表示当前字符应该放在哪一行。使用变量 goingDown 表示当前是向下移动还是向上移动,将每个字符放入对应的行,当 currentRow 到达第一行或最后一行时,改变移动方向。最后将每一行的字符按顺序拼接成最终的结果字符串。
2025-02-06 18:47:57
154
原创 力扣刷题 题5 最长回文串
解决思路:采用中心扩展法,回文串的长度可能是奇数或偶数,对于每个字符,以其为中心向左右扩展,找到最长的回文子串,对于偶数长度的回文串,以两个字符为中心向左右扩展,记录最长的回文子串的起始位置和长度。
2025-02-04 14:57:27
251
原创 送女友的生日快乐代码html动态版(恋爱编年记录)
在一起的三十张照片,重命名为1到30.jpg放入到photo文件夹中一首感人的bgm一颗诚恳的心(哈哈)希望大家能遇良人,天长地久,遇见好的人才有好的爱情。
2025-02-03 22:23:33
763
2
原创 力扣刷题day1题3无重复的最长子串
如果字符已经存在于 charSet 中,移动 left 指针,直到重复字符被移除。使用一个哈希集合 charSet 来存储当前窗口中的字符,确保字符不重复。使用两个指针 left 和 right 表示窗口的左右边界。right 指针用于扩展窗口,left 指针用于收缩窗口。移动 right 指针,将字符加入 charSet。在每次移动 right 指针后,更新最大长度。时间复杂度:𝑂(𝑛)
2025-02-03 21:25:37
236
原创 力扣刷题day1 两数相加
思路:这个问题可以通过模拟加法过程来解决。由于链表中的数字是逆序存储的,可以直接从链表的头部开始逐位相加,并处理进位。通过加入一个虚拟头节点dum 简化链表操作,便利链表L1和L2直到两个链表完全没有进位,每次计算当前位的sum和,并更新进位制carry。算法空间复杂度O(max(n,m))
2025-02-03 17:00:47
200
原创 深度学习实验四 LSTM情感分析
self.embeddings = nn.Embedding(num_embeddings,embedding_dim)#nn.Embedding随机初始化词向量,词典的大小,嵌入词向量的维度last_outputs[i] = output[i][batch_seq_len[i]-1]#index 是长度 -1。
2023-03-23 15:49:12
653
1
原创 计算机图像处理 学习笔记 2022 3 02
255 对应白色块像素高电压为白色for(j=0;j<8;j++} for(i=0;i<8;i++} *(image_out+j*8+i)=*(image_in+(8-1-j)*8-i);以上代码为8*8图像上下翻转图像左上角f(0,0)24位彩色图像BMP文件格式Disk:文件头 14个字节 信息头>=40bytes(宽高,彩色)像素数据包>=w*h*3(RGB)一行[(W*3+3)除4]*4的字节数必须是4的倍数 规律位倒序存储typ...
2022-03-02 18:14:55
2433
原创 计算机图像处理 学习笔记 2022 2 23
成绩:占比 5 22 1图像压缩与编码:图像通信和传输的基础 把内容与存储的变小BMP图像结构 :图像处理的基础图像变换 图像的表示与描述图像检索开卷考试第一章视觉 : 最重要的感知手段 图像: 视觉的基础 视觉系统所接受的图在人脑中形成的印象或者感知图像的分类:灰度256种灰度集 二值(两种颜色) ,多灰度 彩色 :真彩 伪彩 假彩 静态 动态 时空分布分类 二维 三维图像获取 :模拟图像 数字图像 摄取图像 广电转换 数字化图像变换;易于变换或处理...
2022-02-23 18:11:11
162
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅