numpy float16数据转换之精度损失

When you convert from 32bit float to 16bit float and back, some of the bits are lost, but note that this does not mean the decimal representation will be shorter. When you print out a floating point number, the computer only prints the closest decimal representation of the binary value.
It is easier to see what is going on in binary:

# copied from stackoverflow, prints float in binary

import struct
def binary(num):
    return ''.join(bin(ord(c)).replace('0b', '').rjust(8, '0') 
                   for c in struct.pack('!f', num))

x = np.array([0.0429911], dtype='f4')
x1 = x.astype('f2')
x2 = x1.astype('f4')

print binary(x), x
print binary(x1), x1
print binary(x2), x2

output:
00111101001100000001011101110000 [ 0.0429911]
00111101001100000010000000000000 [ 0.04299927]
00111101001100000010000000000000 [ 0.04299927]

as you can see, in binary the final result is truncated (set to 0) yet the decimal representation is longer.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值