- 博客(73)
- 收藏
- 关注
原创 Vision Transformer(ViT)
Vision Transformer(ViT)是一种将Transformer模型应用于计算机视觉任务的创新方法,由Google Research团队在2020年提出。它打破了传统卷积神经网络(CNN)在图像处理中的主导地位,通过全局注意力机制直接建模图像块(patches)之间的关系,尤其在大规模数据集上表现出色。
2025-05-11 00:06:03
1423
原创 文献:A survey on modeling for behaviors of complex intelligent systems based on generative...
本文对复杂智能系统的行为建模进行了广泛而深入的综述,特别聚焦于生成对抗网络(GANs)的创新性应用。
2025-05-04 23:47:47
1593
原创 伪代码(Pseudocode)
伪代码是算法设计的通用蓝图,通过去语法化和逻辑抽象,帮助开发者专注于问题本质。掌握伪代码的编写能力,能显著提升算法设计、协作沟通和技术文档的清晰度。
2025-05-03 23:55:02
1534
原创 生成对抗网络(GAN, Generative Adversarial Network)
从Deepfake到AI艺术创作,GAN正在重塑内容生成的边界。尽管存在训练挑战,但其潜力在医疗、娱乐、工业等领域的应用前景广阔。
2025-05-03 23:34:32
1422
1
原创 蒙特卡罗方法(Monte Carlo Method):基于随机采样的数值计算与模拟技术
蒙特卡罗方法通过随机采样和统计模拟解决数学、物理、工程等领域的复杂问题,其核心是利用大数定律——当样本量足够大时,样本均值会收敛于期望值。
2025-05-02 23:12:27
859
原创 策略梯度算法(Policy Gradient Methods):直接优化策略的强化学习范式
策略梯度算法通过直接优化策略函数(Policy Function)来最大化累积奖励,而非间接优化值函数(如Q-learning)。其核心是梯度上升:计算预期回报对策略参数的梯度,并沿梯度方向更新策略。
2025-05-02 22:45:48
823
原创 序列数据(Sequential Data):按顺序排列的动态信息载体
序列数据是现实世界中动态系统的核心表达形式,其顺序性和依赖性对模型设计提出了独特挑战。从传统的ARIMA到现代的Transformer,序列建模技术持续演进,赋能金融、医疗、语言等领域的智能决策。理解序列数据的本质,是解锁时序预测、自然语言理解等任务的关键。
2025-05-02 22:00:55
754
原创 Bootstrap(自助法):无需假设分布的统计推断工具
Bootstrap 是一种重采样(Resampling)技术,通过在原始数据中有放回地重复抽样,生成大量新样本集,用于估计统计量(如均值、方差)的分布或模型性能的不确定性。
2025-05-02 21:56:14
1025
原创 文献:Towards virtual sample generation with various data conditions A comprehensive review
深度学习(DL)在样本充足的计算任务中取得了显著成功。然而,在实际应用场景中,深度学习常常面临数据有限的挑战。虚拟样本生成是解决小样本问题的一种很有前景的方法。在本研究中,虚拟样本生成技术被分为统计方法和深度学习方法,对这一快速发展的领域进行了全面综述。本文提出了一种通用的虚拟样本生成过程,并对统计方法和主流深度学习方法进行了分析。特别探讨了这些方法的基本原理、最新架构、优化策略,以及它们在数据充足和数据有限场景中的应用。最后,提出了该动态领域未来研究的潜在方向。因此,研究人员和从业者能够获得关于使用最合适
2025-05-02 21:06:25
715
原创 遗传算法(Genetic Algorithm,GA)
遗传算法(Genetic Algorithm,GA)是一种受生物进化理论启发的优化算法,通过模拟自然选择和遗传机制来搜索复杂问题的最优解。
2025-04-30 22:42:29
601
原创 感受野(Receptive Field)
感受野(Receptive Field)是卷积神经网络(CNN)中一个神经元在输入图像上能“看到”的区域范围。简单来说,它表示某个特征图中的像素点,对应原始输入图像中的多大区域。
2025-04-29 22:24:03
446
原创 上采样(Upsampling)
上采样(Upsampling)是深度学习中的一种操作,用于将低分辨率的特征图(或数据)恢复到更高的分辨率,目的是恢复细节信息或匹配目标尺寸。它的核心是“逆向放大”,但并非简单的像素复制,而是通过算法生成新数据。
2025-04-29 10:58:30
559
原创 Transformer
Transformer 的提出彻底革新了深度学习模型的架构设计,成为现代 AI 技术的基石。其核心思想——通过注意力机制实现全局交互——不仅适用于 NLP,也推动了计算机视觉、语音处理等领域的进步。
2025-04-27 23:53:46
2837
原创 图解YOLO(You Only Look Once)目标检测(v1-v5)
YOLO属于深度学习经典检测方法中的单阶段(one - stage)类型,与两阶段(two - stage,如Faster - rcnn、Mask - Rcnn系列)方法相对。
2025-04-26 00:19:17
3128
原创 强化学习(Reinforcement Learning, RL)和深度学习(Deep Learning, DL)
强化学习(Reinforcement Learning, RL)和深度学习(Deep Learning, DL)是人工智能领域两个重要的研究方向,虽然二者可以结合(如深度强化学习),但其核心思想、目标和应用场景存在本质区别。
2025-04-24 23:26:05
1037
2
原创 强化学习核心原理及数学框架
强化学习是机器学习中的一个重要领域,它在诸多复杂任务和实际应用中发挥着关键作用。理解强化学习的基本原理和应用场景,对于推动人工智能技术的发展具有重要意义。
2025-04-24 23:15:31
409
原创 面向弱监督学习(Weakly Supervised Learning)场景的故障诊断
在工业设备、航空航天、能源系统等领域,弱监督学习(Weakly Supervised Learning)为故障诊断提供了一种高效解决方案,尤其在标注数据稀缺或标签质量有限的场景下。
2025-04-23 16:02:01
980
原创 监督学习(Supervised Learning)与无监督学习(Unsupervised Learning)
监督学习与无监督学习是机器学习的两大核心范式
2025-04-23 15:45:17
805
原创 扩散模型(Diffusion Models)
扩散模型(Diffusion Models)是近年来在生成式人工智能领域崛起的一种重要方法,尤其在图像、音频和视频生成任务中表现突出。其核心思想是通过逐步添加和去除噪声的过程来学习数据分布,从而生成高质量样本。
2025-04-22 23:02:25
1062
原创 序列决策问题(Sequential Decision-Making Problem)
序列决策问题是强化学习的核心,其复杂性源于动态性、延迟奖励和高维状态空间。通过结合深度学习(如DQN、策略梯度)和经典RL理论(如贝尔曼方程),深度强化学习(Deep RL)在复杂任务中取得了突破性进展。
2025-04-22 20:46:25
1986
原创 强化学习(Reinforcement Learning, RL)与深度强化学习(Deep Reinforcement Learning, DRL)
本文是关于强化学习(Reinforcement Learning, RL)与深度强化学习(Deep Reinforcement Learning, DRL)的对比分析,涵盖定义、核心区别、算法分类、应用场景及研究挑战
2025-04-21 22:26:23
1130
原创 科学研究:怎么做
进入科研状态是指研究者将注意力、思维和行动高度聚焦于科学问题的探索过程,表现出深度专注、主动思考、高效执行的特质。它并非简单的“开始工作”,而是需要调动知识储备、创造力和逻辑思维,形成持续的探索动力。
2025-04-19 23:40:58
769
原创 下采样(Downsampling)
下采样(Downsampling)指通过特定方法降低数据的空间分辨率或时间分辨率,减少数据量同时保留关键信息。
2025-04-19 22:57:42
921
原创 内积(Inner Product)
内积(Inner Product)是线性代数中的核心概念,广泛应用于数学、物理和机器学习中。在 PyTorch 等深度学习框架中,内积是张量运算的基础操作之一。
2025-04-19 21:31:44
747
原创 PyTorch :优化的张量库
PyTorch 是一个基于 Python 的开源机器学习框架,由 Facebook 的 AI 研究团队(现 Meta AI)于 2016 年推出。它专为深度学习设计,但也可用于传统的机器学习任务。PyTorch 的核心优势在于灵活性、动态计算图和易用性,使其成为学术界和工业界广泛使用的工具。
2025-04-19 20:14:10
1251
原创 基于模板匹配的信用卡号码识别系统
指定信用卡类型# 绘图展示字典将信用卡号码的首位数字映射到对应的信用卡类型。cv_show函数用于显示图像,等待用户按键后关闭窗口。
2025-04-19 10:35:21
679
原创 常用正则化技术dropout
在深度学习中,Dropout 是一种常用的正则化技术,用于防止神经网络过拟合。它的核心思想是随机丢弃(临时关闭)网络中的部分神经元,迫使模型不依赖单一神经元,从而提升泛化能力。
2025-04-16 21:44:25
1088
原创 什么是数据
数据已成为继土地、劳动力、资本后的"第四生产要素",其概念外延从简单的观测记录扩展到包含物质载体、处理流程、价值转换的复杂生态系统。理解数据的多维度本质,需要融合信息技术、哲学认知、法律伦理等多学科视角。在数字化转型浪潮中,构建数据采集、治理、应用的良性循环,将是推动社会进步的关键能力。
2025-04-07 22:27:12
1676
原创 混凝土强度预测工程实践
本项目实现了一个完整的机器学习项目,包含数据加载 → 数据分析 → 模型训练 → 结果评估 → 可视化展示的完整流程。最终目标是预测混凝土的抗压强度。
2025-04-06 20:05:02
1712
原创 基于随机森林算法的信用风险评估项目
这是一个基于随机森林算法的德国信用风险评估项目,主要目的是构建一个机器学习模型来评估德国客户的信用风险,帮助金融机构判断客户是否为高风险客户。
2025-04-02 23:38:24
1232
原创 决策树实战:用Python实现智能分类与预测
决策树是一种监督学习算法,常用于分类和回归任务。本文构建一个从数据准备到模型部署的完整流程,结合理论解释和实际代码,不仅实现决策树模型,而且有助于理解其工作原理和优化方法。
2025-04-01 22:18:13
562
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人