Score : 900900900 points
题面
传送门
翻译有时间再补…
题解
Atcoder不缺少水题,只是你缺少了发现水题的眼睛[大雾]。
这是继AGC027_ABland Yard后,又一次良心心送900900900分。
然而良心变成了凉心…
本题只用证明一个结论:只要一个球在时刻iii能够出现在最终序列里,那么它一定也可以出现在[i,2n][i,2n][i,2n]的时刻里。
这个结论是十分显然的,因为如果它出现在最终序列里,它就一定经过第一个小朋友手中,而这个小朋友可以自由决定它在接下来的哪一个时刻放在序列中。
也就是说问题就转换为了:除了第一个小朋友,都可以一次可以传两个球的方案数。
显然是一道dp水题。
设dp[i][j]dp[i][j]dp[i][j]为现在有iii个球,其中jjj个为红球的方案数。
直接dp即可。
时间复杂度:O(n2)O(n^2)O(n2)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define MAXN 4000
#define MOD 998244353
char s[MAXN+5];
int n,num1[MAXN+5],num2[MAXN+5];
int dp[MAXN+5][MAXN+5];
int main()
{
scanf("%s",s+1);
n=strlen(s+1);
for(int i=1;i<=n;i++)
{
num2[i]=s[i]-'0';
num1[i]=2-num2[i]+num1[i-1];
num2[i]+=num2[i-1];
}
dp[0][0]=1;
for(int i=1;i<=n*2;i++)
{
int cnt1=num1[min(n,i)],cnt2=num2[min(n,i)];
for(int j=0;j<=i;j++)
if(cnt1>=j&&cnt2>=i-j)
{
dp[i][j]=dp[i-1][j];
if(j>0)dp[i][j]=(dp[i][j]+dp[i-1][j-1])%MOD;
}
}
printf("%d\n",dp[n*2][num1[n]]);
}