AtCoder Regular Contest 081 F - Flip and Rectangles 动态规划

题意

给出一个01矩阵,可以将任意行任意列取反,问最大全1子矩形的面积是多少。
n,m<=2000

分析

有一个结论就是,若一个子矩形S中的任意一个2*2的子矩形都含有偶数个1,则存在一种操作使得S中全为1。
证明:
若S中一个2*2的子矩形中有奇数个1,则无论怎么操作,该子矩形中仍然有奇数个1,所以必然不满足。
若我们让S的第一行和第一列全都是1,通过归纳法不难发现S的每一个位置都必然为1。
然后就可以随便做了。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

const int N=2005;
const int inf=1000000000;

int n,m,lef[N][N],rig[N][N],up[N][N];
bool ma[N][N];
char str[N];

int main()
{
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++)
    {
        scanf("%s",str+1);
        for (int j=1;j<=m;j++) ma[i][j]=str[j]=='#'?1:0;
    }
    for (int i=1;i<n;i++)

        for (int j=1;j<m;j++)
            ma[i][j]=ma[i][j]^ma[i][j+1]^ma[i+1][j]^ma[i+1][j+1];
    n--;m--;
    for (int i=1;i<=n;i++)
    {
        for (int j=1;j<=m;j++) lef[i][j]=ma[i][j]?0:lef[i][j-1]+1;
        for (int j=m;j>=1;j--) rig[i][j]=ma[i][j]?0:rig[i][j+1]+1;
    }
    for (int i=1;i<=m;i++) lef[0][i]=rig[0][i]=inf;
    int ans=max(n+1,m+1);
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
        {
            if (ma[i][j]) up[i][j]=0,lef[i][j]=rig[i][j]=inf;
            else
            {
                up[i][j]=up[i-1][j]+1;
                lef[i][j]=min(lef[i][j],lef[i-1][j]);
                rig[i][j]=min(rig[i][j],rig[i-1][j]);
                ans=max(ans,(up[i][j]+1)*(lef[i][j]+rig[i][j]));
            }
        }
    printf("%d",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值