不用sqrt()函数,求平方根的三种方法

最近看到了这个比较有意思的题目,探究了一下。

当然有最暴力的方法,直接遍历,(0.0, x)区间内所有的数据(也可以是 x/2),看值是否相等,但该方法太过暴力,在此不讨论。

可以采用下面的 二分法牛顿法Quake III源码中的方法

浮点数的比较方法比较特别,不能使用平常的 x == 0的方法进行比较,下面都用到了equal比较方法,equal的代码:

const double Min_value = 1e-7; //定义最小的浮点数数误差,这里的用法比 宏更好
bool equal(double num1, double num2)
{
    if ((num1 - num2 > -Min_value) && (num1 - num2 < Min_value))
        return true;
    else
        return false;
}

1、二分法

类似于二分查找的思路,时间复杂度 O ( l o g n ) O(logn) O(logn)

double sqrt_binary_search(double square)
{
    if(square < Min_value)
        return -1;

    double low = 0.0;
    double high = square;

    // while (high - low > Min_value)
    while (!equal(high, low))
    {
        /* code */
        double mid = (high + low) / 2;
        if (mid * mid > square)
        {
            high = mid;
        }
        else
        {
            low = mid;
        }
    }

    return low;
}

2、牛顿法

先分析下牛顿法的原理,用的是牛顿迭代方法

牛顿迭代法又称为牛顿-拉弗森方法,实际上是由牛顿、拉弗森各自独立提出来的。牛顿-拉弗森方法提出来的思路就是利用切线是曲线的线性逼近这个思想。

随便找一个曲线上的A点(为什么随便找,根据切线是切点附近的曲线的近似,应该在根点附近找,但是很显然我们现在还不知道根点在哪里),做一个切线,切线的根(就是和x轴的交点)与曲线的根,还有一定的距离。牛顿、拉弗森们想,没关系,我们从这个切线的根出发,做一根垂线,和曲线相交于B点,继续重复刚才的工作:
在这里插入图片描述
经过多次迭代后会越来越接近曲线的根。

上面就是牛顿迭代的几何直觉。只有将上述过程用代数表示出来,才方便我们写代码。

  • 首先, x 0 x_0 x0处的切线方程为: y − y 0 = f ′ ( x ) ( x − x 0 ) y - y_0 = f'(x) (x - x_0) yy0=f(x)(xx0),即: f ( x ) = y = f ′ ( x ) ( x − x 0 ) + f ( x 0 ) f(x) = y = f'(x) (x - x_0) + f(x_0) f(x)=y=f(x)(xx0)+f(x0)

  • 要 求在 x n x_n xn所在切线方程交于x轴的点 x n + 1 x_{n+1} xn+1,即求解 0 = f ′ ( x ) ( x n + 1 − x n ) + f ( x n ) 0 = f'(x) (x_{n+1} - x_n) + f(x_n) 0=f(x)(xn+1xn)+f(xn),==> x n + 1 = x n − f ( x n ) f ′ ( x n ) x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} xn+1=xnf(xn)f(xn)

  • 通过上面的公式可以得出: x n + 1 = x n − f ( x n ) f ′ ( x n ) x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} xn+1=xnf(xn)f(xn),该公式可用于求任何次方的解。

  • 这里求的是 平方根,即求解 f ( x ) = x 2 = n f(x) = x^2 = n f(x)=x2=n时,x的值是多少。也就是求解: f ( x ) = x 2 − n = 0 f(x) = x^2 - n = 0 f(x)=x2n=0的解。

  • 由于 f ′ ( x ) = 2 x f'(x) = 2x f(x)=2x,所以 x n + 1 = x n − x n 2 − n 2 x n x_{n+1} = x_n - \frac{x_n^2 - n}{2x_n} xn+1=xn2xnxn2n,即 x n + 1 = x n + n x n 2 x_{n+1} = \frac{x_n + \frac{ n}{x_n}}{2} xn+1=2xn+xnn

实现上诉公式时,一个小改进:计算机不善于做除法,所以这里修改为乘 0.5。

double sqrt_newton(double square)
{
    if (square < Min_value)
        return -1;
        
    double ret = 1.0;
    while (!equal(ret*ret, square))
    {
        ret = (ret + square / ret) * 0.5;
    }

    return ret;
}

上面的初始值是随意选择的,选择的好坏一定程度上影响了计算的速度。如,下面的方法选择的初始值是 0x5f3759df

3、来自于Quake III源码的解法

double InvSqrt(double x)
{
    double xhalf = 0.5f * x;
    int i = *(int *)&x;             // get bits for floating value
    i = 0x5f3759df - (i >> 1);      // gives initial guess y0
    x = *(double *)&i;              // convert bits back to float
    x = x * (1.5f - xhalf * x * x); // Newton step, repeating increases accuracy
    return x;
}

4、完整代码

#include <cstdlib>
#include <cstdio>
#include <ctime>
#include <cmath>

using namespace std;

// const double Min_value = 0.0000001;
const double Min_value = 1e-7;

bool equal(double num1, double num2)
{
    if ((num1 - num2 > -Min_value) && (num1 - num2 < Min_value))
        return true;
    else
        return false;
}

double sqrt_binary_search(double square)
{
    if(square < Min_value)
        return -1;

    double low = 0.0;
    double high = square;

    // while (high - low > Min_value)
    while (!equal(high, low))
    {
        /* code */
        double mid = (high + low) / 2;
        if (mid * mid > square)
        {
            high = mid;
        }
        else
        {
            low = mid;
        }
    }

    return low;
}

double sqrt_newton(double square)
{
    if (square < Min_value)
        return -1;
        
    // double ret = 0x5f3759df; // 另一种初值
    double ret = 1.0;
    while (!equal(ret*ret, square))
    {
        ret = (ret + square / ret) * 0.5;
    }

    return ret;
}

double InvSqrt(double x)
{
    double xhalf = 0.5f * x;
    int i = *(int *)&x;             // get bits for floating value
    i = 0x5f3759df - (i >> 1);      // gives initial guess y0
    x = *(double *)&i;              // convert bits back to float
    x = x * (1.5f - xhalf * x * x); // Newton step, repeating increases accuracy
    return x;
}

int main()
{
    double x;
    scanf("%lf", &x);

    int start = clock();
    printf("sqrt_binary_search:%lf sqrt = %lf, time = %lf\n", x, 
    		sqrt_binary_search(x), (double)(clock() - start) / CLOCKS_PER_SEC);

    start = clock();
    printf("sqrt_newton:%lf sqrt = %lf, time = %lf\n", x, sqrt_newton(x), 
    		(double)(clock() - start) / CLOCKS_PER_SEC);

    start = clock();
    printf("InvSqrt:%lf sqrt = %lf, time = %lf\n", x, InvSqrt(x), 
    		(double)(clock() - start) / CLOCKS_PER_SEC);

    start = clock();
    printf("sqrt:%lf sqrt = %lf, time = %lf\n", x, sqrt(x), 
    		(double)(clock() - start) / CLOCKS_PER_SEC);
}

上述代码经过测试,可以发现 来自于Quake III源码的解法 和 cmath中的 sqrt 的速度差不多。

在这里插入图片描述

参考

  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值