范德蒙(Vander Monde)行列式的计算与应用

范德蒙(Vander Monde)行列式的定义为:

1   x1   x1^2   ...   x1^(n-2)   x1^(n-1)
1   x2   x2^2   ...   x2^(n-2)   x2^(n-1)
...   ...     ...       ...   ....              ...
1   xn-1 xn-1^2 ... xn-1^(n-2) xn-1^(n-1)
1   xn   xn^2   ...   xn^(n-2)   xn^(n-1)

行或列的形式不限,其值的计算为:

\prod (xi-xj), 其中1<=j<i<=n

即在一个方向上,所有xi与之前的xj的差值的连乘。

证明方法:

(1)每一列乘以xn,然后后一列,减去前一列,得到最后一行,除了最后一行首列为1,其他列均为0;

(2)每一行提取(xi-xn)的公因式,其中1<=i<n

(3)从n-1递归计算到1;

应用领域:

利用范德蒙行列式,可以求出多项式的点值表示形式,而多项式的点值表示是快速傅里叶变换(FFT)的基础。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值