范德蒙(Vander Monde)行列式的定义为:
1 x1 x1^2 ... x1^(n-2) x1^(n-1)
1 x2 x2^2 ... x2^(n-2) x2^(n-1)
... ... ... ... .... ...
1 xn-1 xn-1^2 ... xn-1^(n-2) xn-1^(n-1)
1 xn xn^2 ... xn^(n-2) xn^(n-1)
行或列的形式不限,其值的计算为:
, 其中1<=j<i<=n
即在一个方向上,所有xi与之前的xj的差值的连乘。
证明方法:
(1)每一列乘以xn,然后后一列,减去前一列,得到最后一行,除了最后一行首列为1,其他列均为0;
(2)每一行提取(xi-xn)的公因式,其中1<=i<n
(3)从n-1递归计算到1;
应用领域:
利用范德蒙行列式,可以求出多项式的点值表示形式,而多项式的点值表示是快速傅里叶变换(FFT)的基础。