系列简介:这个系列文章讲解线性代数的基础内容,注重学习方法的培养。线性代数课程的一个重要特点(也是难点)是概念众多,而且各概念间有着千丝万缕的联系,对于初学者不易理解的问题我们会不惜笔墨加以解释。在内容上,以国内的经典教材“同济版线性代数”为蓝本,并适当选取了一些补充材料以开阔读者的视野。本系列文章适合作为初学线性代数时的课堂同步辅导,也可作为考研复习的参考资料。文章中的例题大多为扎实基础的常规题目和帮助加深理解的概念辨析题,并有相当数量的历年考研试题。对于一些难度较大或对理解所学知识有帮助的“经典好题”,我们会详细讲解。阅读更多“线性代数入门”系列文章,欢迎关注数学若只如初见!

在行列式的计算问题中,有一些难度较大,具有较高技巧性的题目,作为加边法的应用,本节我们来介绍“缺项”范德蒙德行列式的计算方法,这里利用了一种不同于上节的加边技巧,请读者仔细体会。(由于公式较多,故正文采用图片形式给出。)
一、概述。二、计算“缺项”范德蒙德行列式的典型例题。
关于范德蒙德行列式的定义和计算公式的介绍见下文:
线性代数入门——范德蒙德行列式的计算及其简单应用
三、利用加边法构造“行列式形式”的函数f(x)。(请读者复习上一节的内容,对比这两种加边方式的不同。)
关于“行列式函数”的基础知识的介绍见下文:
线性代数入门——“行列式函数”及其导数的相关问题
四、例题的详细解答。(将加边后的行列式按第4行展开,通过比较多项式系数求出原行列式。)
五、对本题的一些评注。(本题解法新颖,值得读者反复揣摩。利用类似的方法可以解决所有“缺项”范德蒙德行列式的问题,例如本题中如果改为缺少2次方项,应该如何计算?我们作为习题留给感兴趣的读者。)
上一篇:线性代数入门——利用“加边法”计算行列式