POJ 3984 迷宫问题

POJ 3984 迷宫问题

Time Limit: 1000MS    Memory Limit: 65536K

Description - 题目描述

定义一个二维数组: 

 

int maze[5][5] = {
 	0, 1, 0, 0, 0,
 	0, 1, 0, 1, 0,
 	0, 0, 0, 0, 0,
 	0, 1, 1, 1, 0,
 	0, 0, 0, 1, 0,
 };


它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线。

 

Input - 输入

  一个5 × 5的二维数组,表示一个迷宫。数据保证有唯一解。

 

Output - 输出

  左上角到右下角的最短路径,格式如样例所示。 

 

Sample Input - 输入样例

0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0

 

Sample Output - 输出样例

(0, 0)
(1, 0)
(2, 0)
(2, 1)
(2, 2)
(2, 3)
(2, 4)
(3, 4)
(4, 4)

 

题解

  水题。

  BFS找最短路径,然后再BFS回溯,倒序输出即可。

 

代码 C++

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <queue>
 4 #define INF 0x7F7F7F7F
 5 struct Point{
 6     int x, y;
 7 }now, nxt, opt[105];
 8 int map[15][15], fx[8] = { 1, 0, -1, 0, 0, -1, 0, 1 };
 9 int main(){
10     int i, j, tmp;
11     for (i = 1; i <= 5; ++i) for (j = 1; j <= 5; ++j){
12         scanf("%d", &tmp);
13         if (!tmp) map[i][j] = INF;
14     }
15     std::queue<Point> q;
16     now.y = now.x = 1;
17     q.push(now); map[1][1] = 2;
18     while (!q.empty()){
19         now = q.front(); q.pop();
20         tmp = map[now.y][now.x] + 1;
21         for (i = 0; i < 8; i += 2){
22             nxt.y = now.y + fx[i]; nxt.x = now.x + fx[i + 1];
23             if (map[nxt.y][nxt.x] == INF){
24                 map[nxt.y][nxt.x] = tmp; q.push(nxt);
25             }
26         }
27     }
28     now.y = now.x = 5;
29     q.push(opt[0] = now); j = 1;
30     while (!q.empty()){
31         now = q.front(); q.pop();
32         tmp = map[now.y][now.x] - 1;
33         for (i = 0; i < 8; i += 2){
34             nxt.y = now.y + fx[i]; nxt.x = now.x + fx[i + 1];
35             if (map[nxt.y][nxt.x] == tmp){
36                 opt[j++] = nxt; q.push(nxt); break;
37             }
38         }
39     }
40     for (i = j - 1; ~i; --i) printf("(%d, %d)\n", opt[i].y - 1, opt[i].x - 1);
41     return 0;
42 }

 

转载于:https://www.cnblogs.com/Simon-X/p/6391505.html

根据提供的引用内容,可以得知这是一道关于迷宫问题题目,需要使用Java语言进行编写。具体来说,这道题目需要实现一个迷宫的搜索算法,找到从起点到终点的最短路径。可以使用广度优先搜索或者深度优先搜索算法来解决这个问题。 下面是一个使用广度优先搜索算法的Java代码示例: ```java import java.util.*; public class Main { static int[][] maze = new int[5][5]; // 迷宫地图 static int[][] dir = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}}; // 方向数组 static boolean[][] vis = new boolean[5][5]; // 标记数组 static int[][] pre = new int[5][5]; // 记录路径 public static void main(String[] args) { Scanner sc = new Scanner(System.in); for (int i = 0; i < 5; i++) { for (int j = 0; j < 5; j++) { maze[i][j] = sc.nextInt(); } } bfs(0, 0); Stack<Integer> stack = new Stack<>(); int x = 4, y = 4; while (x != 0 || y != 0) { stack.push(x * 5 + y); int t = pre[x][y]; x = t / 5; y = t % 5; } stack.push(0); while (!stack.empty()) { System.out.print(stack.pop() + " "); } } static void bfs(int x, int y) { Queue<Integer> qx = new LinkedList<>(); Queue<Integer> qy = new LinkedList<>(); qx.offer(x); qy.offer(y); vis[x][y] = true; while (!qx.isEmpty()) { int tx = qx.poll(); int ty = qy.poll(); if (tx == 4 && ty == 4) { return; } for (int i = 0; i < 4; i++) { int nx = tx + dir[i][0]; int ny = ty + dir[i][1]; if (nx >= 0 && nx < 5 && ny >= 0 && ny < 5 && maze[nx][ny] == 0 && !vis[nx][ny]) { vis[nx][ny] = true; pre[nx][ny] = tx * 5 + ty; qx.offer(nx); qy.offer(ny); } } } } } ``` 该代码使用了广度优先搜索算法,首先读入迷宫地图,然后从起点开始进行搜索,直到找到终点为止。在搜索的过程中,使用标记数组记录已经访问过的位置,使用路径数组记录路径。最后,使用栈来输出路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值