第 23 章 基于光流场的交通汽车检测跟踪

基于光流场的交通汽车检测跟踪

本文主要研究基于光流场的视频车辆检测与跟踪技术,主要工作包括:

1.受外界环境以及摄像机等因素的影响,采集的视频图像往往受各种噪声影响,这会降低光流法检测运动目标的准确度。因此在检测运动目标之前,需要对图像进行图像平滑预处理,包括中值滤波、均值滤波、动态滤波三种去噪方法。

2.运动目标检测的关键就是要把目标物体提取出来,即将目标物体从复杂的背景中分离出来。传统的目标检测方法首先要提取出静态背景图像,然后将序列图像与背景图像相比较以提取目标物体,这种方法数据处理量较大。本文主要介绍基于Horn-Schunk算法、Lucas-Kanade算法、块匹配算法和基于相位的方法。通过实验表明H-S算法、L-K算法能够有效检测出运动目标,然而都存在一定的优劣性。

3.运动目标跟踪采用Horn-Schunk算法,通过实验仿真有效实现了运动目标跟踪,实验证明这种方法减少了数据处理量,能够满足现实中对目标物体实时跟踪的需要。​

在这里插入图片描述
主函数:

clc; clear all; close all;
videofile = 'viptraffic.avi';
reader = VideoReader(videofile);
opticFlow = opticalFlowHS;
while hasFrame(reader)
    im = readFrame(reader);
    im_gray = rgb2gray(im);
    flow = estimateFlow(opticFlow,im_gray);
    figure(1);
    subplot(1, 2, 1); imshow(im, []); title('原图');
    subplot(1, 2, 2);
    imshow(im)
    hold on
    plot(flow,'DecimationFactor',[5 5],'ScaleFactor',25)
    hold off
    title('光流场标记图');
end

光流场的计算主要有基于梯度的方法、基于匹配的方法、基于能量的方法和基于相位的方法。
可以自行指定链接绘图
在这里插入图片描述

源码添加链接描述下载地址:
https://download.csdn.net/download/dongbao520/85706021

部分参考来源:

https://blog.51cto.com/u_15295137/5169459
https://blog.csdn.net/m0_60703264/article/details/121214423

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海宝7号

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值