2023最新CV推荐论文及代码合集

本文介绍了2023年最新的一系列计算机视觉相关论文,包括图像分割、实例分割、零-shot分类、目标跟踪、动作识别、点云处理、自动驾驶和深度学习加速等多个领域的研究,同时提供了相应的开源代码链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2023最新CV推荐论文及代码合集
1.【图像分割:实例分割】PatchDCT: Patch Refinement for High Quality Instance Segmentation
论文地址:https://arxiv.org/pdf/2302.02693.pdf
开源代码:https://github.com/olivia-w12/PatchDCT
2.【图像分类:Zero-Shot】CHiLS: Zero-Shot Image Classification with Hierarchical Label Sets
论文地址:https://arxiv.org/pdf/2302.02551.pdf
开源代码:https://github.com/acmi-lab/CHILS
3.【目标跟踪】MixFormer: End-to-End Tracking with Iterative Mixed Attention
论文地址:https://arxiv.org/pdf/2302.02814.pdf
开源代码:https://github.com/MCG-NJU/MixF
4.【动作识别】Fine-Grained Action Detection with RGB and Pose Information using Two Stream Convolutional Networks
论文地址:https://arxiv.org/pdf/2302.02755.pdf
开源代码:https://github.com/fidsinn/SportTaskME22
5.【动作识别】AIM: Adapting Image Models for Efficient Video Understanding
论文地址:https://arxiv.org/pdf/2302.03024.pdf
工程主页:https://adapt-image-models.github.io/
开源代码:https://github.com/taoyang1122/adapt-image-models
6.【动作识别:半监督】Pyramid Self-attention Polymerization Learning for Semi-supervised Skeleton-based Action Recognition
论文地址:https://arxiv.org/pdf/2302.02327.pdf
开源代码:https://github.com/1xbq1/PSP-Le
7.【域自适应】RLSbench: Domain Adaptation Under Relaxed Label Shift
论文地址:https://arxiv.org/pdf/2302.03020.pdf
开源代码:https://github.com/acmi-lab/RLSbench
8.【Generative Domain Adaptation】Domain Re-Modulation for Few-Shot Generative Domain Adaptation
论文地址:https://arxiv.org/pdf/2302.02550.pdf
开源代码(即将开源):https://github.com/wuyi2020/DoR
9.【类别增量学习】Neural Collapse Inspired Feature-Classifier Alignment for Few-Shot Class-Incremental Learning
论文地址:https://arxiv.org/pdf/2302.03004.pdf
开源代码:https://github.com/NeuralCollapseApplications/FSCIL
10.【点云目标检测:室内】TR3D: Towards Real-Time Indoor 3D Object Detection
论文地址:https://arxiv.org/pdf/2302.02858.pdf
开源代码:https://github.com/SamsungLabs
11.【点云分割】Top-Down Beats Bottom-Up in 3D Instance Segmentation
论文地址:https://arxiv.org/pdf/2302.02871.pdf
开源代码:https://github.com/SamsungLabs/td3d
12.【点云:分类、分割】PaRot: Patch-Wise Rotation-Invariant Network via Feature Disentanglement and Pose Restoration
论文地址:https://arxiv.org/pdf/2302.02535.pdf
工程主页:https://patchrot.github.io/
代码即将开源
13.【自动驾驶:车道线检测】CLiNet: Joint Detection of Road Network Centerlines in 2D and 3D
论文地址:https://arxiv.org/pdf/2302.02259.pdf
开源代码:https://github.com/AutonomousVe
14.【基础网络架构:Transformer计算加速】KDEformer: Accelerating Transformers via Kernel Density Estimation
论文地址:https://arxiv.org/pdf/2302.02451.pdf
开源代码:https://github.com/majid-daliri
15.【图像去模糊】Revisiting Image Deblurring with an Efficient ConvNet
论文地址:https://arxiv.org/pdf/2302.02234.pdf
开源代码:https://github.com/lingyanruan/LaKDNet
16.【图像翻译】Zero-shot Image-to-Image Translation
论文地址:https://arxiv.org/pdf/2302.03027.pdf
开源代码(即将开源):https://github.com/pix2pixzero/pix2pix-zero

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海宝7号

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值