查缺补漏(2) - 置信区间

问题1

怎么理解置信区间(Confidence Interval【CI】)?

参考维基百科:https://en.wikipedia.org/wiki/Confidence_interval做出的理解:

置信区间是一种区间估计。给定置信水平$\alpha$,意味着计算得到对应的置信区间有$(1-\alpha)*100\%$的可能覆盖了参数的真实值。

对于同一个分布的随机变量,我们获取的样本可能不尽相同,如果我们能够从总体中得到无数的样本集,那么从这些样本集计算得到的无数个不同或相同的置信区间,将有$(1-\alpha)*100\%$的比例是包含了参数的真实值的。不是每一个置信区间都能够覆盖参数的真实值。

举例说明

有一个可以给杯子盛上液体的机器,并且每次盛装液体的重量应该调整为250g。由于机器不能每次都精准地为杯子盛上250g,而是会有一些变动,所以应该把每次盛液体的重量当成一个随机变量X。假设X服从均值为250g,标准差$\sigma=2.5g$的正态分布。要判断这个机器是不是充分校准了,我们随机抽取了$\text{n}=25$个杯子的液体作为样本,并测得它们的重量,得到$X$的一份随机样本$X_1, X_2, ..., X_{25}$。

一个合适的对期望$\mu$的估计是样本均值 \[{\hat {\mu }}={\bar {X}}={\frac {1}{n}}\sum _{i=1}^{n}X_{i}.\]

对于这份样本,实际的重量均值为:\[{\bar {x}}={\frac {1}{25}}\sum _{i=1}^{25}x_{i}=250.2{\text{ grams}}.\]

如果我们取得另一份样本,很有可能计算出来的均值会是 250.4 或者 251.1 grams,等等。如果均值是280 grams的话,相比于实际重量应该接近250 grams的情况而言,这个数字就有些极端了。存在观测值为250.2 grams 的一个邻域(区间),如果总体均值是这个区间中的某个值,都不会认为是不寻常的。这样的一个区间就称为参数$\mu$的置信区间。

这个区间应该如何计算出来?

区间的端点从样本计算得到,所以它们是统计量,是样本$X_1, X_2, ..., X_{25}$的函数,本质也是随机变量。

在这个例子中,我们根据服从正态分布的样本均值也服从正态分布这一点来计算置信区间的端点值,样本均值的期望不变,标准差则变为

 \[{\frac {\sigma }{\sqrt {n}}}={\frac {2.5{\text{ g}}}{\sqrt {25}}}=0.5{\text{ grams}}\]

通过标准化后得到一个依赖于被估计的μ随机变量:

\[Z={\frac {{\bar {X}}-\mu }{\sigma /{\sqrt {n}}}}={\frac {{\bar {X}}-\mu }{0.5}}\]

但这个随机变量的分布——标准正态分布,却不依赖于μ。所以找到和 μ独立的 −z 和 z,使得随机变量 Z在两个值之间的概率为1-α,或者说决定置信水平为α,是可能的。

取 1 − α = 0.95作例,则有

\[P(-z\leq Z\leq z)=1-\alpha =0.95.\]

根据z服从卷积正态分布函数(cumulative normal distribution function),有:

\[{\begin{aligned}\Phi (z)&=P(Z\leq z)=1-{\tfrac {\alpha }{2}}=0.975,\\[6pt]z&=\Phi ^{-1}(\Phi (z))=\Phi ^{-1}(0.975)=1.96,\end{aligned}}\]

从而得到

\[{\begin{aligned}0.95&=1-\alpha =P(-z\leq Z\leq z)=P\left(-1.96\leq {\frac {{\bar {X}}-\mu }{\sigma /{\sqrt {n}}}}\leq 1.96\right)\\[6pt]&=P\left({\bar {X}}-1.96{\frac {\sigma }{\sqrt {n}}}\leq \mu \leq {\bar {X}}+1.96{\frac {\sigma }{\sqrt {n}}}\right).\end{aligned}}\]

换句话说,95%的置信区间的下界是:

\[ {\text{Lower endpoint}}={\bar {X}}-1.96{\frac {\sigma }{\sqrt {n}}},\]

上界是:

\[ {\text{Upper endpoint}}={\bar {X}}+1.96{\frac {\sigma }{\sqrt {n}}}.\]

所以在这个例子中,置信区间为:

\[{\begin{aligned}0.95&=\Pr({\bar {X}}-1.96\times 0.5\leq \mu \leq {\bar {X}}+1.96\times 0.5)\\[6pt]&=\Pr({\bar {X}}-0.98\leq \mu \leq {\bar {X}}+0.98).\end{aligned}}\]

 

这个例子中,标准差$\sigma$是已知的,样本均值${\bar{X}}$的分布是只有$\mu$一个未知参数的正态分布。在其他理论例子,$\sigma$有可能也是未知的,这个时候则应该使用学生T分布(Student's t-distribution.)。

----------

两个之前有些模糊的点,我现在这样理解:

1. 在通过置信区间计算置信水平,或者确定置信水平再计算置信区间的过程,我们都基于了样本服从我们指定的分布这样一个假设。

在实际中,除非这个数据是通过模拟得到的,否则很难保证这个假设是成立的。置信区间,本身也只是一个估计而已。它是不是达到了我们期望的置信水平,也是不知道的。

或许也可以通过蒙特卡洛方法做一个大概的估计,但是也还是估计而已。

2. (在假设成立的条件下)可以这样理解上面出现的概率。

    1)指在参数已知的情况下,统计量结果处于一个范围(如$\mu-1.96\frac{\sigma}{\sqrt{n}}$到$\mu+1.96\frac{\sigma}{\sqrt{n}}$)的概率(最开始是$P(-z\leq Z\leq z)=P\left(-1.96\leq {\frac {{\bar {X}}-\mu }{\sigma /{\sqrt {n}}}}\leq 1.96\right)$),但这个范围由于参数$\mu$是未知的,也是未知的;

    2)指根据统计量结果,对应参数可能被计算得到的置信区间覆盖的概率。

转载于:https://www.cnblogs.com/RRRRecord/p/7811191.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值