自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(17)
  • 收藏
  • 关注

原创 制作自己的目标检测数据集

文章目录制作自己的目标检测数据集一、下载Voc数据集二、安装标注工具labelimg三、制作图像标签1.创建一个文件夹2.在当前文件夹下打开命令提示符3.打开标注软件制作自己的目标检测数据集一、下载Voc数据集在官网下载Voc2012数据集:http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html#devkit找到–>Development Kit–>Download the training/validation data .

2020-11-19 11:48:56 4865

原创 Anaconda环境下Tensorflow的安装与卸载

Anaconda环境下Tensorflow的安装与卸载文章目录Anaconda环境下Tensorflow的安装与卸载一、 环境的创建与删除1.查看自己配置的环境2.配置一个新的环境3.进入和退出环境4.删除环境二、包(第三方库)的安装与卸载1.查看安装的包2.安装包3.删除包4.更新包三、tensorflow的安装与卸载1.创建一个tensorflow环境2.激活tensorflow环境3.安装tensorflow4.查看是否安装成功5.查看tensorflow的版本号6.退出tensorflow环境一

2020-11-06 10:18:18 56735 18

原创 BiliBili下载助手

BiliBili下载助手直接将哔哩哔哩视频的网页连接复制到网站的搜索框,点击搜索,再视频上右击鼠标选择视频另存为即可。网址:https://xbeibeix.com/api/bilibili/

2020-10-29 14:53:12 1106

原创 动量、学习率、Early Stopping、Dropout

动量和学习率1、动量(momentum)梯度更新:动量:其中Z表示的是前一次梯度的方向,根据矢量三角形法则,选取下次的运动方向。不加动量的情况下,方向变化比较尖锐,没有考虑历史变化的情况,且容易局部最优。加动量后,变化更加的缓和,依靠惯性,可能跳出局部最优解。optimizer = SGD(learning_rate=0.02, momentum=0.9)optimizer = RMSprop(learning_rate=0.02, momentum=0.9)optimizer =

2020-10-26 18:22:30 2741 1

原创 网络模型的交叉验证

网络模型的交叉验证数据集的内容一般分为:trainset、valset和testset,将获取的mnist数据集的(x,y)部分拆分为[x_train, y_train](训练数据)和[x_val, y_val](评测数据)#把[x, y]拆分成[x_train, y_train]和[x_val, y_val]idx = tf.range(60000)idx = tf.random.shuffle(idx)x_train, y_train = tf.gather(x, idx[:50000]),

2020-10-26 16:29:58 374

原创 Regularization(正则化)

Regularization(正则化)线性回归中的三种形式:注:我们讨论的线性或者非线性针对的是自变量的系数,而非自变量本身,所以这样的话不管自变量如何变化,自变量的系数如果符合线性我们就说这是线性的。所以这里我们也就可以描述一下多项式线性回归。如:第一个模型是一个线性模型, 欠拟合,也称为 高偏差,不能很好地适应我们的训练集;第三个模型是一个四次方的模型, 过于强调拟合原始数据,而丢失了算法的本质:若给出一个新的值使之预测,它将表现的很差,是 过拟合,也称为 高方差,虽然能非常好地适应我们的训练集

2020-10-26 16:13:58 247

原创 tensorflow2的模型保存与加载

模型的保存与加载save/load weights轻量级方式,只保存网络的参数,不管其他的状态,这种模式适合自己对代码有个清晰的认识。我们在training时如果中断了,可以通过这个方式保存最近更新的参数。例:创建一个网络结构,首先training、test,将参数保存进weights.ckpt,删除网络结构,在创建一个原来一样的网络结构,导入保存的参数,进行test,会发现loss和accuracy与删除前的值相近(网络结构中有很多其他的因子会影响最后的结果,所以不一定完全相同)#save the

2020-10-25 20:52:04 921

原创 Tensorflow2自定义网络层

自定义网络层通过自定义网络层,实现自己的网络结构自定义网络层详细说明class MyDense(layers.Layer): #继承layer父类 def __init__(self, inp_dim, outp_dim): #继承父类属性 super(MyDense, self).__init__() self.kernel = self.add_weight('w', [inp_dim, outp_dim]) self.bias = self.add_weight('b'

2020-10-25 19:59:28 567

原创 Tensorflow2的Keras接口:compile、fit

Tensorflow2的Keras接口:compile、fit能将Train和test的过程封装起来,使代码简洁化,便于管理。1、compile   配置用于训练的模型。compile( optimizer='rmsprop', loss=None, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, t

2020-10-25 19:14:29 730

原创 TensorBoard可视化实例(MNIST)

TensorBoard可视化利用TensorBoard对MNIST数据集在训练和测试时进行数据监听,将loss与预测值以图的形式显示出来。首先在cmd进入你的tensorflow环境,通过目录进入你要监听的.py文件的主目录下,我的.py文件实在logs目录下,然后输入下面的代码开启TensorBoard,然后再网页输入下面的网址进入TensorBoard页面。运行py文件就可以进行数据的监听了。监听画面如下:调用plo_to_image接口,将数据集中的图像转换成png类型。def plo

2020-10-25 16:10:47 707 1

原创 MNIST数据集

MNIST数据集tensorflow实现mnist数据集的前向传播、后向传播、测试的代码import tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras import layersfrom tensorflow.keras import datasetsimport osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'# x: [60k, 28, 28],

2020-10-24 16:23:25 2726

原创 FashionMNNST数据集

FashionMNNST数据集# -*- coding: utf-8 -*-import tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras import datasets,layers,optimizers,Sequential,metricsdef preprocess(x,y):#数据预处理 x = tf.cast(x, dtype=tf.float32)/255. y = tf.cast(y,

2020-10-24 16:12:29 151

原创 sigmoid,softmax,tanh简单实现

sigmoid,softmax,tanhsimoid函数将值缩放为[0,1]import tensorflow as tfa = tf.linspace(-6.,6.,13) #[-6,6]等分成13个数,dtype=float32x = tf.sigmoid(a)with tf.Session() as sess: init = tf.initialize_all_variables()#数据初始化 sess.run(init) print(sess.run(x))

2020-10-22 10:27:03 334

原创 TensorFlow:数据集加载

数据集加载数据集加载数据集加载1.keas.datasetstensoflow.keras提供了keras.datasets的接口常见的数据集:Boston housing price regerssion datasetMNIST/Fashion-MNIST datasetsentiment classification dataset(imdb)small images classidication dataset(CIFAR10/100)数据集加载步骤Step0: 准备要加载的nu

2020-10-21 20:13:03 1191

原创 TensorFlow语法(3)

TensorFlow语法(3)数据的合并与分割数据统计排序数据的填充与复制张量限幅数据的合并与分割1.tf.constant( )合并将两组数据合并,axis指定合并的维度。除了要合并的维度不一样,其他维度要相等。例:[class1-4,students,scores][class5-6,students,scores]六个班级的学生成绩分两次录入,将所有数据合并在一起。a = tf.ones([4,35,8])b = tf.ones([2,35,8])c = tf.concat([a,b

2020-10-21 16:43:14 214

原创 TensorFlow语法(2)

TensorFlow语法(2)数学运算维度变换数学运算1.矩阵元素运算:+ - * / % (取余) //(整除)tf.math.log( )、tf.exp( )tf.pow( )幂次方、tf.sqrt( )平方根2.矩阵运算:@,tf.matmul( )都表示矩阵相乘。维度变换1.tf.reshape( )重塑张量。将[4,784,3]恢复成[4,28,28,3],需要额外的信息(height和weight)2.tf.transposer( )转置3.tf.ex.

2020-10-19 19:55:32 384 1

转载 Tensorflow语法(1)

Tensorflow语法一、创建tensor二、索引与切片三、Broadcasting一、创建tensor1.利用Numpy,list创建tf.convert_to_tensor(np.ones([2,3])),2行3列全为0的tensortf.convert_to_tensor(np.zeros([2,3])),2行3列全为1的tensortf.convert_to_tensor([1,2]),利用列表创建tensortf.convert_to_tensor([1,2.]),列表中有flo.

2020-10-19 18:27:03 213

MouseInc v2.13.4

一款鼠标手势软件,在windows10的任何地方都可以使用,浏览器啊,windows文件系统啊,都可以使用,并且使用非常方便,解压即可使用

2023-12-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除