Tensorflow2的Keras接口:compile、fit

Tensorflow2的Keras接口:compile、fit

能将Train和test的过程封装起来,使代码简洁化,便于管理。

compile、fit、evaluate、predict函数中参数的具体说明请看:参数说明

完整代码实例:

import  tensorflow as tf
from    tensorflow.keras import datasets, layers, optimizers, Sequential, metrics


def preprocess(x, y):
    """
    x is a simple image, not a batch
    """
    x = tf.cast(x, dtype=tf.float32) / 255.
    x = tf.reshape(x, [28*28])
    y = tf.cast(y, dtype=tf.int32)
    y = tf.one_hot(y, depth=10)
    return x,y


batchsz = 128
(x, y), (x_val, y_val) = datasets.mnist.load_data()
print('datasets:', x.shape, y.shape, x.min(), x.max())



db = tf.data.Dataset.from_tensor_slices((x,y))
db = db.map(preprocess).shuffle(60000).batch(batchsz)
ds_val = tf.data.Dataset.from_tensor_slices((x_val, y_val))
ds_val = ds_val.map(preprocess).batch(batchsz) 

sample = next(iter(db))
print(sample[0].shape, sample[1].shape)


network = Sequential([layers.Dense(256, activation='relu'),
                     layers.Dense(128, activation='relu'),
                     layers.Dense(64, activation='relu'),
                     layers.Dense(32, activation='relu'),
                     layers.Dense(10)])
network.build(input_shape=(None, 28*28))
network.summary()



# metrics:测试的指标
network.compile(optimizer=optimizers.Adam(lr=0.01),
		loss=tf.losses.CategoricalCrossentropy(from_logits=True),
		metrics=['accuracy']
	)

# db:训练的数据集   epochs:训练的次数    validation_data:测试的数据集   validation_freq:每训练n次,测试一次,也可以设置一个指标,达到指标停止训练
network.fit(db, epochs=5, validation_data=ds_val, validation_freq=2)
 
network.evaluate(ds_val) #整个训练完成后,测试一次,也可以用一个新的数据集测试

sample = next(iter(ds_val))
x = sample[0]
y = sample[1] # one-hot
pred = network.predict(x) # [b, 10]获得一个batch的值
# convert back to number 
y = tf.argmax(y, axis=1)
pred = tf.argmax(pred, axis=1)

print(pred)
print(y)

©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页