python_数据结构与算法_DAY05&&DAY06&&DAY07

本文介绍了Python实现的基本数据结构栈与队列,包括栈的push、pop、peek等操作,以及队列的enqueue、dequeue功能。接着详细讲解了冒泡排序、选择排序、插入排序、希尔排序、快速排序和归并排序,并对比了它们的时间复杂度。最后展示了二分查找的两种实现方式。
摘要由CSDN通过智能技术生成

一、栈与队列

1. 栈

  • 栈的操作
    Stack() 创建一个新的空栈
    push(item) 添加一个新的元素item到栈顶
    pop() 弹出栈顶元素
    peek() 返回栈顶元素
    is_empty() 判断栈是否为空
    size() 返回栈的元素个数
#coding=utf-8

class Stack(object):
    '''栈'''
    def __init__(self):
        self.__list= []

    def push(self,item):
        '''添加一个新的元素item到栈顶'''
        self.__list.append(item)


    def pop(self):
        '''弹出栈顶元素'''
        return self.__list.pop()

    def peek(self):
        '''返回栈顶元素'''
        if self.__list:
            return self.__list[-1]
        else:
            return None


    def is_empty(self):
        '''判断栈是否为空'''
        return self.__list==[]

    def size(self):
        '''返回栈的元素个数'''
        return len(self.__list)



if __name__=='__main__':
    s=Stack()
    s.push(1)
    s.push(2)
    s.push(3)
    s.push(4)
    print(s.size())
    print(s.pop())
    print(s.pop())
    print(s.size())
    print(s.pop())
    print(s.pop())

运行结果:
4
4
3
2
2
1

2. 队列

(1). 队列的实现

  • 队列操作
    Queue() 创建一个空的队列
    enqueue(item) 往队列中添加一个item元素
    dequeue() 从队列头部删除一个元素
    is_empty() 判断一个队列是否为空
    size() 返回队列的大小
#coding=utf-8

class Queue():
    '''队列'''
    def __init__(self):
        self.__list = []


    def enqueue(self,item):
        '''往队列中添加一个item元素'''
        self.__list.append(item)


    def dequeue(self):
        '''从队列头部删除一个元素'''
        return self.__list.pop(0)

    def is_empty(self):
        '''判断一个队列是否为空'''
        return self.__list==[]

    def size(self):
        '''返回队列的大小'''
        return len(self.__list)


if __name__=='__main__':
    q=Queue()
    q.enqueue(1)
    q.enqueue(2)
    q.enqueue(3)
    q.enqueue(4)
    print(q.size())
    print(q.dequeue())
    print(q.dequeue())
    print(q.dequeue())
    print(q.dequeue())

运行结果:
4
1
2
3
4

(2). 双端队列

  • Deque() 创建一个空的双端队列
    add_front(item) 从队头加入一个item元素
    add_rear(item) 从队尾加入一个item元素
    remove_front() 从队头删除一个item元素
    remove_rear() 从队尾删除一个item元素
    is_empty() 判断双端队列是否为空
    size() 返回队列的大小
#coding=utf-8

class Dqueue():
    '''双端队列'''

    def __init__(self):
        self.__list = []

    def add_front(self, item):
        '''往队列中添加一个item元素'''
        self.__list.insert(0,item)

    def add_rear(self, item):
        '''往队列中添加一个item元素'''
        self.__list.append(item)

    def pop_front(self):
        '''从头部删除一个元素'''
        return self.__list.pop(0)

    def pop_rear(self):
        '''从头部删除一个元素'''
        return self.__list.pop()


    def is_empty(self):
        '''判断一个队列是否为空'''
        return self.__list == []

    def size(self):
        '''返回队列的大小'''
        return len(self.__list)
if __name__=='__main__':
    d=Dqueue()
    d.add_front(23)
    d.add_rear(10)
    d.add_front(50)
    d.add_rear(2)
    print(d.pop_front())
    print(d.pop_front())
    print(d.pop_front())
    print(d.pop_rear())

运行结果:
50
23
10
2

二、 排序

1. 冒泡排序

  • 时间复杂度
    最优时间复杂度:O(n) (表示遍历一次发现没有任何可以交换的元素,排序结束。)
    最坏时间复杂度:O(n2)
    稳定性:稳定
#coding=utf-8
#冒泡排序
def bubble_sort(alist):
    '''冒泡排序'''
    for j in range(len(alist)-1):
        count=0
        for i in range(0,len(alist)-1-j): #左闭右开 要走到倒数第二个位置
            #从头走到尾
            if alist[i]>alist[i+1]:
                count+=1
                alist[i],alist[i+1]=alist[i+1],alist[i]

        if count==0:   #哪次过程没有交换了,直接退出
            return
# i 0>>n-2  range(0,n-1)  j=0
# i 0>>n-3  range(0,n-1-1)  j=1
# i 0>>n-4  range(0,n-1-2)  j=2
# :
# :
# :
# i 0>>n-n+1  range(0,n-n+2) j=n-2
if __name__=='__main__':
    li=[14,12,5,1,9,3,6,7,8]
    print(li)
    bubble_sort(li)
    print(li)

运行结果:
[14, 12, 5, 1, 9, 3, 6, 7, 8]
[1, 3, 5, 6, 7, 8, 9, 12, 14]

2. 选择排序

  • 时间复杂度
    最优时间复杂度:O(n2)
    最坏时间复杂度:O(n2)
    稳定性:不稳定(考虑升序每次选择最大的情况)
#coding=utf-8
#选择排序
# alist=[54,336,93,17,77,31,44,55,20]
def select_sort(alist):
    '''选择排序'''
    n=len(alist)
    for i in range(n-1):
        mix=alist[i]
        for j in range(i+1,n):
            if alist[j]<mix:
                mix=alist[j]
                k=j
        alist[i],alist[k]=alist[k],alist[i]
        k=i+1

if __name__=='__main__':
    alist=[54,336,93,17,77,31,44,55,20]
    print(alist)
    select_sort(alist)
    print(alist)

运行结果:
[54, 336, 93, 17, 77, 31, 44, 55, 20]
[17, 20, 31, 44, 54, 55, 77, 93, 336]

3. 插入排序

  • 时间复杂度
    最优时间复杂度:O(n) (升序排列,序列已经处于升序状态)
    最坏时间复杂度:O(n2)
    稳定性:稳定
#coding=utf-8
#插入排序

def insert_sort(alist):
    '''插入排序'''
    n=len(alist)
    for j in range(1,n):
        i=j
        while i>0:
            if alist[i]<alist[i-1]:
                alist[i],alist[i-1]=alist[i-1],alist[i]
                i = i - 1
            else:
                break

if __name__ == '__main__':
        alist = [54, 336, 93, 17, 77, 31, 44, 55, 20]
        print(alist)
        insert_sort(alist)
        print(alist)

运行结果:
[54, 336, 93, 17, 77, 31, 44, 55, 20]
[17, 20, 31, 44, 54, 55, 77, 93, 336]

4. 希尔排序

  • 时间复杂度
    最优时间复杂度:根据步长序列的不同而不同
    最坏时间复杂度:O(n2)
    稳定性:不稳定
#coding=utf-8
#希尔排序
def shell_sort(alist):
    '''希尔排序'''
    n=len(alist)
    gap=n//2   #注意python中整除是‘//’
    print(gap)
    while gap>0:   #gap变化到0之前,插入算法执行的次数
        for j in range(gap,n):
            i=j
            while i>0 and i-gap>=0:
                #写入算法与普通插入算法的区别就是gap步长
                if alist[i]<alist[i-gap]:
                    alist[i],alist[i-gap]=alist[i-gap],alist[i]
                    i=i-gap
                else:
                    break
                print(alist)
        print('********************')
        gap//=2   #缩短gap步长

if __name__ == '__main__':
        alist = [54, 336, 93, 17, 77, 31, 44, 55, 20]
        shell_sort(alist)

运行结果:
4
[54, 31, 93, 17, 77, 336, 44, 55, 20]
[54, 31, 44, 17, 77, 336, 93, 55, 20]
[54, 31, 44, 17, 20, 336, 93, 55, 77]
[20, 31, 44, 17, 54, 336, 93, 55, 77]
********************
[20, 17, 44, 31, 54, 336, 93, 55, 77]
[20, 17, 44, 31, 54, 55, 93, 336, 77]
[20, 17, 44, 31, 54, 55, 77, 336, 93]
********************
[17, 20, 44, 31, 54, 55, 77, 336, 93]
[17, 20, 31, 44, 54, 55, 77, 336, 93]
[17, 20, 31, 44, 54, 55, 77, 93, 336]
********************

5. 快速排序

  • 最优时间复杂度:O(nlogn)
    最坏时间复杂度:O(n2) (每一次都把元素分成,自己和右边全部)
    稳定性:不稳定
#coding=utf-8
#快速排序
def quick_sort(alist,first,last):
    '''快速排序'''
    if first>=last:
        return
    mid_value=alist[first]
    low=first
    high=last
    while low<high:   #一次的快速排序
        while low<high and alist[high]>=mid_value:   #如果有相等的值 尽量放到一边
            high -= 1
        alist[low] = alist[high]
        while low<high and alist[low]<mid_value:
            low += 1
        alist[high]=alist[low]
    alist[low]=mid_value

    # 第一次结束后 alist[:low-1]    alist[low+1:]

    #对low左边的列表执行快速排序
    quick_sort(alist,first,low-1)

    #对low右边的列表执行快速排序
    quick_sort(alist,low+1,last)

if __name__ == '__main__':
        li = [54, 336, 93, 17, 77, 31, 44, 55, 20]
        print(li)
        quick_sort(li,0,len(li)-1)
        print(li)

运行结果:
[54, 336, 93, 17, 77, 31, 44, 55, 20]
[17, 20, 31, 44, 54, 55, 77, 93, 336]

6.归并排序

  • 时间复杂度
    最优时间复杂度:O(nlogn)
    最坏时间复杂度:O(nlogn)
    稳定性:稳定
#coding=utf-8
#归并排序
def merge_sort(alist):
    '''归并排序'''
    n = len(alist)
    if n<=1:
        return alist
    mid = n//2    #将列表分成两部分


    #left 采用归并排序后形成的有序的新的列表
    left_li = merge_sort(alist[:mid])
    #right 采用归并排序后形成的有序的新的列表
    right_li = merge_sort(alist[mid:])
    #以上代码为拆分过程

    # 以下代码是将两个有序的子序列合并为一个新的整体
    #merge(left,right)
    left_pointer, right_pointer = 0, 0
    result = []
    while left_pointer < len(left_li) and right_pointer < len(right_li):
        if left_li[left_pointer]<=right_li[right_pointer]:
            result.append(left_li[left_pointer])
            left_pointer += 1
        else:
            result.append(right_li[right_pointer])
            right_pointer += 1

    result += left_li[left_pointer:]
    result += right_li[right_pointer:]
    return result

if __name__ == "__main__":
    li = [54, 93, 17, 77, 31, 44, 55,20]
    print(li)
    sorted_li = merge_sort(li)
    print(li)
    print(sorted_li)

运行结果:
[54, 93, 17, 77, 31, 44, 55, 20]
[54, 93, 17, 77, 31, 44, 55, 20]
[17, 20, 31, 44, 54, 55, 77, 93]  #原数列不变,在新创建的数列进行操作

7. 常见排序算法效率比较

在这里插入图片描述

8. 二分查找(折半查找)

  • 时间复杂度
    最优时间复杂度:O(1)
    最坏时间复杂度:O(logn)
  1. 递归方法
#coding=utf-8
#二分查找(递归)
def binary_search(alist,item):
    '''二分查找(递归)'''
    n = len(alist)
    if n > 0:
        mid=n//2
        if alist[mid]==item:
            return True
        elif item<alist[mid]:
            return binary_search(alist[:mid],item)
        else:
            return binary_search(alist[mid+1:],item)
    return False

if __name__=='__main__':
    li = [17, 20, 31, 44, 54, 55, 77, 93]
    print(binary_search(li, 55))
    print(binary_search(li, 100))
    print(binary_search(li, 54))

运行结果:
True
False
True

  1. 非递归方法
#coding=utf-8
#二分查找(非递归)
def binary_search01(alist,item):
    '''二分查找(非递归)'''
    n=len(alist)
    first = 0
    last = n-1
    while first<=last:
        mid=(first+last)//2
        if alist[mid]==item:
            return True
        elif alist[mid]>item:
            last=mid-1
        else:
            first=mid+1
    return False

if __name__=='__main__':
    li = [17, 20, 31, 44, 54, 55, 77, 93]
    print(binary_search01(li, 55))
    print(binary_search01(li, 100))
    print(binary_search01(li, 54))

运行结果:
True
False
True
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值