上取整和下取整

数学计算机科学中,取整函数是一类将实数映射到相近的整数函数[1]

常用的取整函数有两个,分别是下取整函数上取整函数

下取整函数在数学中一般记作\lfloor x \rfloor或者E(x),在计算机科学中一般记作floor(x),表示不超过x的整数中最大的一个。

 \lfloor x \rfloor=\max\, \{n\in\mathbb{Z}\mid n\le x\}.

举例来说,\lfloor 3.633 \rfloor = 3\lfloor 56 \rfloor = 56\lfloor -2 \rfloor = -2\lfloor -2.263 \rfloor = -3。对于非负的实数,其下取整函数的值一般叫做它的整数部分取整部分。而x -\lfloor x\rfloor叫做x小数部分。每个分数都可以表示成其整数部分与一个真分数的和,而实数的整数部分和小数部分是与此概念相应的拓延。

下取整函数的符号也会用方括号表示,如[2.3]=2,称作高斯符号。而(x)则被用来表示一个数的小数部分,如(2.3)=0.3。

上取整函数在数学中一般记作\lceil x \rceil,在计算机科学中一般记作ceil(x),表示不小于x的整数中最小的一个。

 \lceil x \rceil=\min\{n\in\mathbb{Z}\mid x\le n\}.

举例来说,\lceil 3.633 \rceil = 4\lceil 56 \rceil = 56\lceil -2 \rceil = -2\lceil -2.263 \rceil = -2

计算机中的上取整函数和下取整函数的命名来自于英文ceiling(天花板)和floor(地板),相关的记法由肯尼斯·艾佛森于1962年引入。[2]

【转自wikipedia】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值