基于邻接矩阵的广度优先搜索遍历
Problem Description
给定一个无向连通图,顶点编号从0到n-1,用广度优先搜索(BFS)遍历,输出从某个顶点出发的遍历序列。(同一个结点的同层邻接点,节点编号小的优先遍历)
Input
输入第一行为整数n(0< n <100),表示数据的组数。
对于每组数据,第一行是三个整数k,m,t(0<k<100,0<m<(k-1)*k/2,0< t<k),表示有m条边,k个顶点,t为遍历的起始顶点。
下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。
Output
输出有n行,对应n组输出,每行为用空格隔开的k个整数,对应一组数据,表示BFS的遍历结果。
Sample Input
1
6 7 0
0 3
0 4
1 4
1 5
2 3
2 4
3 5
Sample Output
0 3 4 2 5 1
#include <stdio.h>
#include <iostream>
#include <stdlib.h>
#include <queue>
using namespace std;
/**********
bian[][]存放两点之间是否相连,
vis[]存放是否遍历,
a[]存放BFS遍历结果。
使用队列的原因:
1,满足先访问的结点先输出
2,当一个节点的邻居有多个时必须使用队列先将其存放起来
可将结点分为3种:
1,正在访问的结点vis[]=1,将其入队
2,访问结束的结点a[e++]=p,将其出队
3,还未访问的结点,等待访问。
**********/
int vis[101],bian[101][101],a[101],e,k;
void BFS(int t)
{
int i;
e=0;
queue <int >q;
vis[t]=1;
q.push(t);
while(!q.empty()) ///当队列为空时说明所有节点都访问完了
{
int p=q.front();
a[e++]=p;
q.pop(); ///队首元素访问结束,将其出队
for(i=0; i<k; i++) ///寻找当前节点的所有邻居,并将其入队
{
if(bian[p][i]&&!vis[i])
{
vis[i]=1;
q.push(i);
}
}
}
}
int main()
{
int n,m,t,x,y;
cin>>n;
while(n--)
{
memset(vis,0,sizeof(vis));
memset(bian,0,sizeof(bian));
cin>>k>>m>>t;
while(m--)
{
cin>>x>>y;
bian[x][y]=1;
bian[y][x]=1;
}
BFS(t);
for(int i=0; i<k-1; i++)
cout<<a[i]<<" ";
cout<<a[k-1]<<endl;
}
}