处理数据集python脚本(处理自己制作的数据集) import osclass BatchRename(): ''' 批量重命名文件夹中的图片文件 ''' def __init__(self): self.path = './qiche1' # 表示需要命名处理的文件夹 def rename(self): filelist = os.listdir(self.path) # 获取文件路径 total_num = len(filelist) # 获取文件长度
字符串分割 异常 泛型 练习 package step1;import java.util.List;import java.util.ArrayList;import java.util.Scanner;import java.util.StringTokenizer;//拆分字符串public class SplitDemo{ public static List<String> splitPartition(String str){ ArrayList<String> l
泛型类和泛型方法 package step1;//public class Generic {// public void show(String s){// System.out.println(s);// }// public void show(Integer i){// System.out.println(i);// }// public void show(Boolean b){// System.out.println(
自定义异常处理 package com;import java.util.Scanner;public class ScoreException extends Exception{ public ScoreException(){ } public ScoreException(String message){ super(message); }}package com;public class Teacher { public void che
韩老师java课程 可变参数练习package step;import jdk.nashorn.internal.runtime.JSErrorType;import java.util.*;public class byteOperator { public static void main(String[] args) { HspMethod h = new HspMethod(); String s = h.showScore("董建",80,95,100,90,100); S
java打印空心金字塔 编程思想:1,先简单后复杂先打实心矩形-->实心半金字塔-->实心全金字塔-->空心金字塔 for(int i = 1; i <= 5; i++) { for (int k = 1; k <= 5 - i; k++) { System.out.print(" "); } for (int j = 1; j <= 2 * i - 1; j++) {
001矩形面积 class Solution {public: int computeArea(int ax1, int ay1, int ax2, int ay2, int bx1, int by1, int bx2, int by2) { int s1 = (ax2-ax1)*(ay2-ay1); int s2 = (bx2 - bx1)*(by2 - by1); //定重叠长方形的左右上下位置。 int overw = min(ax2,bx2) - max(.
数据集加载拼接 from torch.utils.data import Datasetfrom PIL import Imageimport oshelp(Dataset)class MyData(Dataset): def __init__(self,root_dir,label_dir): self.root_dir = root_dir self.label_dir = label_dir self.path = os.path.join(self.r
MNIST #1,加载数据import torch as timport torch.nn as nnimport torch.nn.functional as Fimport torch.optim as optimfrom torch.optim import lr_schedulerfrom torchvision import transformsfrom torchvision import datasets#2.设置参数BATCH_SIZE = 64EPOCHS = 3DEVICE
MNIST # import tensorflow.compat.v1 as tfimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataimport numpy as npimport matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签plt.rcParams['axes.unicode
minist # https://www.bilibili.com/video/BV13V411b78a#reply4201150084 # 谢谢大家的关注啊,祝你们成功 # 教程有用的话,可以到评论区祝我暴富噢import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataimport time# 若是使用tf2,可能会有警告或者错误,可使用tensorflow.compat.v1取代tensorflo