文章目录
1. 引言:什么是损失函数?
在人工智能的世界里,损失函数就像是模型的导航系统和成绩单。它告诉模型当前的预测有多"糟糕",并指引模型朝着正确的方向改进。无论是简单的线性回归还是复杂的生成对抗网络,损失函数都扮演着至关重要的角色。
1.1 损失函数的本质作用
输入数据 → 模型预测 → 损失函数计算 → 优化调整 → 更好预测
损失函数的核心价值体现在:
- 量化误差:将"好坏"转化为具体数值
- 指导优化:为模型参数调整提供方向
- 评估性能:客观比较不同模型的优劣
2. 第一性原理:损失函数的数学基础
2.1 基本概念
从第一性原理出发,损失函数的核心数学思想是:
最小化误差 + 可优化性 = 有效的学习过程
数学表达式: L ( y true , y pred ) → min L(y_{\text{true}}, y_{\text{pred}}) \rightarrow \min L(ytrue,ypred)→min
2.2 一个简单案例:房价预测
让我们通过一个具体例子理解损失函数的工作原理:
任务:根据房屋面积预测价格
数据:面积[100, 150, 200]m²,价格[200, 250, 300]千元
模型: y = w × x + b y = w \times x + b y=w×x+b
初始状态(w=1, b=0):
预测值: [100, 150, 200]
真实值: [200, 250, 300]
误差: [100, 100, 100] → 损失很大!
优化后(w=1, b=100):
预测值: [200, 250, 300]
真实值: [200, 250, 300]
误差: [0, 0, 0] → 完美预测!