Python光谱预处理-归一化、平滑、基线校正

本文介绍了如何使用Python进行光谱数据的预处理,包括归一化处理、平滑滤波以及基线校正。通过Python库matplotlib、scipy和numpy,实现对光谱数据的高效分析,为后续的定量分析打下基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

采用Python实现一下光谱预处理,原理讲解见:光谱数据处理及定量分析_Dfreedom.的博客-CSDN博客_光谱算法

Python代码:

import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import savgol_filter

#-----数据读取-----#
x = np.array([]) #波数
y = np.array([]) #幅值

#-----归一化&平滑-----#
n=5 #拟合阶数
y_filter=savgol_filter(y,21,5,mode = "nearest") #SG平滑
y_uniform = (y_filter-min(y_filter))/(max(y_filter)-min(y_filter)) #归一化

#-----基线校正-----#
p0 = np.polyfit(x,y_uniform,n)#多项式拟合,返回多项式系数
y_fit0 = np.polyval(p0,x) #计算拟合值
r0 = y_uniform-y_fit0
dev0 = np.sqrt(np.sum((r0-np.mean(r0))**2)/len(r0)) #计算残差
y_remove0 = y_uniform[y_uniform <= y_fit0] #峰值消除
x_remove0 = x[np.where(y_uniform <= y_fit0)] #峰值消除
i=0
judge=1
dev=[]
while judge:
    p1 = np.polyfit(x_remove0, y_remove0, n)  # 多项式拟合,返回多项式系数
    y_fit1 = np.polyval(p1, x_remove0)  # 计算拟合值
    r1 = y_remove0 - y_fit1
    dev1 = np.sqrt(np.sum((r1 - np.mean(r1)) ** 2) / len(r1))  # 计算残差
    dev.append(dev1)
    if i == 0:
        judge = abs(dev[i] - dev0) / dev[i] > 0.05;
    else:
        judge = abs((dev[i] - dev[i-1]) / dev[i]) > 0.05; # 残差判断条件
    y_remove0[np.where(y_remove0 >= y_fit1)] = y_fit1[np.where(y_remove0 >= y_fit1)]; # 光谱重建
    i=i+1
y_baseline=np.polyval(p1, x)  #基线
y_baseline_correction=y_uniform-y_baseline  #基线校正后

#-----显示-----#
plt.figure(1)
plt.plot(x,y_uniform,color="black", linewidth=2.0, linestyle="solid", label="Raw_data")
plt.plot(x,y_baseline,color="red", linewidth=2.0, linestyle="solid", label="Baseline")
plt.plot(x,y_baseline_correction,color="blue", linewidth=2.0, linestyle="solid", label="After_correction")
plt.title('spetrum',fontsize=30)#设置图的标题
plt.legend(loc="best")#图例放到图中的最佳位置
plt.xlabel('wavenumber(cm^-1)',fontsize=14)  #设置横轴名称以及字体大小
plt.ylabel('amplitude',fontsize=14)   #设置纵轴

plt.savefig('a_myplot.jpg', dpi=700) #保存图片,矢量图
plt.show()

运行结果:

<think>好的,用户的问题是关于光谱数据的归一化平滑处理的方法或工具。首先我需要理解用户的需求。他们可能是在进行近红外光谱分析,比如在化学、材料科学或者生物医学领域,需要预处理数据以提高后续建模的准确性。用户提到了归一化平滑处理,这两个都是常见的数据预处理步骤。 根据系统指令,我需要先回顾相关的引用内容。引用[1]提到近红外光谱处理流程包括数据预处理,比如归一化和波长选择,以及建模。引用[4]详细讨论了归一化的优点和方法,比如Batch Normalization,但光谱数据可能更多使用其他归一化方法,比如标准正态变换(SNV)或多元散射校正(MSC)。这些方法可能在引用中没有直接提到,但结合领域知识,我需要补充这些常见的光谱归一化技术。 平滑处理方面,常用的方法包括Savitzky-Golay滤波、移动平均、小波变换等。这些方法可以帮助减少噪声,提高信噪比。引用[3]提到深度学习在数据处理中的去噪效果,但用户可能更关注传统方法,所以需要分开讨论。 接下来,我需要整理可用的工具或库。Python中的scipy库有Savitzky-Golay滤波的实现,numpy和scikit-learn可以用于归一化处理。R语言中的prospectr包和pls库也常用。商业软件如MATLAB的PLS Toolbox和OPUS可能更用户友好,适合非编程人员。 用户可能需要具体的代码示例,比如使用Python的SNV归一化和Savitzky-Golay平滑。同时,要注意引用相关的内容,比如引用[4]关于归一化的优点,可以指出归一化如何减少内部协变量偏移,提升模型性能。 需要确保回答结构清晰,分步骤介绍方法和工具,提供代码示例,并列出相关问题。还要检查是否所有数学表达式用了正确的LaTeX格式,比如$公式$,独立公式用$$...$$。 最后,生成相关问题,帮助用户深入探索,比如不同归一化方法的比较或处理后的效果评估。确保回答真实可靠,参考了现有文献和常用工具,同时结合用户提供的引用内容。</think>### 光谱数据处理方法及工具 #### 一、归一化方法 1. **标准正态变换(SNV)** 通过每个样本的均值和标准差进行标准化: $$ x_{norm} = \frac{x - \mu}{\sigma} $$ 适用于消除光散射和基线漂移[^1]。 2. **多元散射校正(MSC)** 利用参考光谱(通常为平均光谱)修正样本间的散射差异,公式为: $$ x_{msc} = \frac{x - a}{b} $$ 其中$a$和$b$通过线性回归计算。 3. **最大-最小值归一化** 将光谱数据缩放到$[0,1]$区间: $$ x_{norm} = \frac{x - x_{min}}{x_{max} - x_{min}} $$ 适用于消除量纲差异[^4]。 4. **矢量归一化(Vector Normalization)** 对光谱向量进行L2范数归一化: $$ x_{norm} = \frac{x}{\|x\|_2} $$ --- #### 二、平滑方法 1. **Savitzky-Golay滤波** 基于局部多项式拟合的光滑方法,可同时计算导数。Python实现: ```python from scipy.signal import savgol_filter smoothed = savgol_filter(spectrum, window_length=11, polyorder=2) ``` 2. **移动平均法** 通过滑动窗口计算均值: $$ y_i = \frac{1}{2k+1}\sum_{j=-k}^{k} x_{i+j} $$ 简单但可能导致峰形展宽。 3. **小波去噪** 使用离散小波变换(如symlet小波)分解信号后阈值处理: ```python import pywt coeffs = pywt.wavedec(spectrum, 'sym5', level=3) threshold = np.std(coeffs[-3]) * np.sqrt(2*np.log(len(spectrum))) coeffs[1:] = [pywt.threshold(c, threshold) for c in coeffs[1:]] reconstructed = pywt.waverec(coeffs, 'sym5') ``` --- #### 三、工具与库推荐 | 工具类型 | 推荐方案 | 特点说明 | |----------------|-----------------------------------|-----------------------------------| | **Python库** | `scipy.signal`(平滑) | 包含Savitzky-Golay等经典算法 | | | `sklearn.preprocessing`(归一化)| 提供MinMaxScaler等标准化类 | | **R语言包** | `prospectr`包 | 专为光谱设计的MSC、SNV等功能 | | | `pls`库 | 包含光谱预处理与建模一体化工具 | | **商业软件** | MATLAB PLS Toolbox | 图形化界面,包含OPUS格式支持 | | | OPUS(Bruker) | 仪器配套的专业光谱处理软件 | --- #### 四、完整处理示例(Python) ```python import numpy as np from sklearn.preprocessing import StandardScaler # SNV归一化 def snv(input_data): output = np.zeros_like(input_data) for i in range(input_data.shape[0]): avg = np.mean(input_data[i,:]) std = np.std(input_data[i,:]) output[i,:] = (input_data[i,:] - avg)/std return output # 应用流程 raw_spectra = np.loadtxt('spectra.csv') norm_spectra = snv(raw_spectra) # 自定义SNV smoothed = savgol_filter(norm_spectra, 15, 3) # 窗口15点,3次多项式 ``` ---
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dfreedom.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值