题目:
一个台阶总共有n 级,如果一次可以跳1 级,也可以跳2 级。
求总共有多少总跳法,并分析算法的时间复杂度。
两个思路:1.利用递归,就是Fibonacci,f(n)=f(n-1)+f(n-2),并且f(1)=1,f(2)=2.
int Fibonacci(int n)
{
if(n<2)
return 1;
return Fibonacci(n-1) + Fibonacci(n-2);
}
2.将上述递归用迭代方式实现
int climbStairs(int n)
{
int tmp[3]={1,1};
if(n<2)
return tmp[n];
for(int i=2;i<=n;i++)
{
tmp[2]=tmp[1]+tmp[0];
tmp[0]=tmp[1];
tmp[1]=tmp[2];
}
return tmp[2];
}
举一反三
1、兔子繁殖问题
13世纪意大利数学家斐波那契在他的《算盘书》中提出这样一个问题:有人想知道一年内一对兔子可繁殖成多少对,便筑了一道围墙把一对兔子关在里面。已知一对兔子每一个月可以生一对小兔子,而一对兔子出生后.第三个月开始生小兔子假如一年内没有发生死亡,则一对兔子一年内能繁殖成多少对?
分析:这就是斐波那契数列的由来,本节的跳台阶问题便是此问题的变形,只是换了种表述形式。
2、换硬币问题。
想兑换100元钱,有1,2,5,10四种钱,问总共有多少兑换方法。
const int N = 100;
int dimes[] = {1,2,5,10};
int arr[N+1] = {1};
int coinExchange(int n)
{
for(int i=0;i<sizeof(dimes)/sizeof(int);i++)
{
for(int j=dimes[i];j<=n;j++)
{
arr[j] += arr[j-dimes[i]];
}
}
return arr[n];
}
思想是:a(n) = a(n) + a(n-x);即将x加入之后剩余有多少种方法