101跳台阶问题

题目:

一个台阶总共有n 级,如果一次可以跳1 级,也可以跳2 级。

求总共有多少总跳法,并分析算法的时间复杂度。

两个思路:

1.利用递归,就是Fibonacci,f(n)=f(n-1)+f(n-2),并且f(1)=1,f(2)=2.

int Fibonacci(int n)
{
	if(n<2)
		return 1;
	return Fibonacci(n-1) + Fibonacci(n-2);
}

2.将上述递归用迭代方式实现

int climbStairs(int n)
{
	int tmp[3]={1,1};

	if(n<2)
		return tmp[n];
	for(int i=2;i<=n;i++)
	{
		tmp[2]=tmp[1]+tmp[0];
		tmp[0]=tmp[1];
		tmp[1]=tmp[2];
	}
	return tmp[2];
}

举一反三

1、兔子繁殖问题

13世纪意大利数学家斐波那契在他的《算盘书》中提出这样一个问题:有人想知道一年内一对兔子可繁殖成多少对,便筑了一道围墙把一对兔子关在里面。已知一对兔子每一个月可以生一对小兔子,而一对兔子出生后.第三个月开始生小兔子假如一年内没有发生死亡,则一对兔子一年内能繁殖成多少对?

分析:这就是斐波那契数列的由来,本节的跳台阶问题便是此问题的变形,只是换了种表述形式。

2、换硬币问题。

想兑换100元钱,有1,2,5,10四种钱,问总共有多少兑换方法。

const int N = 100;
int dimes[] = {1,2,5,10};
int arr[N+1] = {1};
int coinExchange(int n)
{
	
	for(int i=0;i<sizeof(dimes)/sizeof(int);i++)
	{
		for(int j=dimes[i];j<=n;j++)
		{
			arr[j] += arr[j-dimes[i]];
		}
	}
	return arr[n];
}
思想是:a(n) = a(n) + a(n-x);即将x加入之后剩余有多少种方法



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值