8、可视化高斯滤波器并完成高斯滤波

本文档展示了如何使用Python实现高斯滤波器的可视化,并通过实例解释了如何在图像上增加高斯噪声,然后应用高斯滤波器进行降噪处理。文章详细阐述了高斯噪声的特性,并提供了相关代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本节一起绘制一个可视化的高斯滤波器,同时对一个彩色图像增加高斯噪声,最后通过一个高斯滤波器对图像进行降噪处理。

就像上节说的那样,滤波不是学习重点,下面通过实操了解下原理即可

可视化高斯滤波器

高斯滤波器符合高斯分布,并且是二维高斯分布,这一点在上一节高斯滤波中已经介绍了。

下面我们通过 python 来生成一个高斯滤波器,并且对其可视化。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.stats import multivariate_normal
# 定义一个高斯滤波器
def gaussian_kernel(size, sigma=1.0):
    kernel = np.fromfunction(
        lambda x, y: (1/ (2 * np.pi * sigma ** 2)) * np.exp(- ((x - size // 2) ** 2 + (y - size // 2) ** 2) / (2 * sigma ** 2)),
        (size, size)
    )
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

董董灿是个攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值