【洛谷】P1060 开心的金明

P1049 装箱问题

题目大意

题目链接:P1060 开心的金明

有N元钱,希望购买M个物品,每个物品的价格和重要度都是正整数,重要度分五等,为1~5。每个物品的价值是 价格 * 重要度,求N元钱能买到的最大价值。

这题符合背包问题的基本要素:一个背包(在题目里是N元钱),M个物品,每个物品有体积(价格)和价值(价格*重要度),求背包能装下的最大价值。如果你还不知道什么是背包问题,那么请看我的背包问题学习笔记

通过分析题意得知,每个物品最多买一个,所以这题为01背包。

思路

这题除了输入,其他与01背包模板没有区别,所以这里只说输入:

  1. 第一行输入总钱数(即背包体积)和物品个数。
  2. 第2~N+1行每行输入两个正整数,w[i] = 第一个数,v[i] = 两个数的乘积

代码

#include<cstdio>
#include<stack>
#include<iostream>
using namespace std;
long long vv,n,w[50],v[50],f[30010];
int main(){
    cin >> vv >> n;
    for (int i = 1;i <= n;++i) cin >> w[i] >> v[i],v[i] *= w[i]; // 唯一的区别
    for (int i = 1;i <= n;++i){
        for (int j = vv;j >= w[i];--j){ // 如果不知道为什么倒着循环,请看我的背包问题学习笔记
            f[j] = max(f[j],f[j - w[i]] + v[i]); // 朴实无华的状态转移方程
        }
    }
    cout << f[vv];
    return 0;
}

当然,下面是使用01背包算法解决P1060 开心金明问题的代码,并附有详细注释: ```cpp #include <iostream> #include <algorithm> using namespace std; const int MAXN = 33000; // 背包最大容量 int dp[MAXN]; // 动态规划数组,dp[i]表示容量为i时的最大价值 int main() { int n, m; // n表示物品个数,m表示背包容量 cin >> m >> n; for (int i = 0; i < n; i++) { int v, p; // v表示物品的体积,p表示物品的价值 cin >> v >> p; for (int j = m; j >= v; j--) { // 从后往前遍历背包容量,保证之前计算的dp[j-v]没有被覆盖 dp[j] = max(dp[j], dp[j - v] + v * p); // 更新当前容量下的最大价值 } } cout << dp[m] << endl; // 输出背包容量为m时的最大价值 return 0; } ``` 代码解释: 1. 首先,我们定义了常量MAXN表示背包的最大容量,并声明了一个长度为MAXN的dp数组,dp[i]表示容量为i时的最大价值。 2. 接下来,从输入中读取背包容量m和物品个数n。 3. 然后,使用一个循环遍历每个物品。在每次循环中,我们读取当前物品的体积v和价值p。 4. 接着,使用一个逆序的循环遍历背包容量j,从m到v。这样做是为了保证之前计算的dp[j-v]没有被覆盖。 5. 在内层循环中,我们更新dp[j]的值,将其更新为dp[j]和dp[j-v] + v * p的较大值。其中,dp[j]表示不选当前物品时的最大价值,dp[j-v] + v * p表示选择当前物品时的最大价值。 6. 最后,输出dp[m],即背包容量为m时的最大价值。 希望这个解释对你有帮助!如果还有其他问题,请随时提问。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值