机器学习
Gunther17
我很菜
展开
-
LDA与PCA都是常用的降维方法,二者的区别
从主观的理解上,主成分分析到底是什么?它其实是对数据在高维空间下的一个投影转换,通过一定的投影规则将原来从一个角度看到的多个维度映射成较少的维度。到底什么是映射,下面的图就可以很好地解释这个问题——正常角度看是两个半椭圆形分布的数据集,但经过旋转(映射)之后是两条线性分布数据集。LDA与PCA都是常用的降维方法,二者的区别在于:出发思想不同。PCA主要是从特征的转载 2017-10-22 16:41:25 · 15820 阅读 · 0 评论 -
Preprocessing data-sklearn数据预处理
数据标准化preprocessing.scale(X,axis=0, with_mean=True, with_std=True, copy=True):将数据转化为标准正态分布(均值为0,方差为1)preprocessing.minmax_scale(X,feature_range=(0, 1), axis=0, copy=原创 2017-12-16 20:48:27 · 511 阅读 · 0 评论 -
LibRec使用重现trustsvd和`Exception in thread"main"net.librec.common.LibrecException:Loss=NaN or Infinity
1.首先 下载 2.下载后解压。 3.在windows下演示,linux同理。 4.直接先进入cmd,切换到解压的目录bin下如图: 5.测试运行一个简单的推荐算法:Global Averagelibrec rec -exec -D rec.recommender.class=globalaverage从图上可知,LibRec自动(从类路径classpath中)加载了 librec.pro原创 2018-04-19 22:56:34 · 1317 阅读 · 0 评论 -
机器学习的一些概念
1.什么是凸二次规划首先二次规划的标准形式如下:minf(x)=12xTHx+cTx s.t.Ax≤b (1)(1)minf(x)=12xTHx+cTx s.t.Ax≤b \begin{align} & \begin{matrix} \min & f(x)=\frac{1}{2}{{x}^{T}}Hx+{{c}^{T}}x \\...原创 2018-09-10 19:51:26 · 194 阅读 · 0 评论